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Abstract 
 

Solar Assisted Power Generation (SAPG) can be seen as a synergy of solar and fossil 

plants – combining the environmental benefits of the former and the scale, efficiency 

and reliability of the latter. SAPG offers great potential for cost effective utilization 

of solar energy on utility scale and could accelerate the adoption of solar thermal 

energy technologies in the short and medium term, especially in countries with a 

significant coal base and a good solar resource such as Australia, China, United 

States, India and South Africa. 

SAPG is the replacement of bled-off steam in a Regenerative Rankine power cycle. 

Power plant simulations were performed using weather data for Lephalale, South 

Africa (Matimba power station). With an increase in the solar field outlet 

temperature, an increase in overall solar to electric efficiency was observed, superior 

to a stand-alone Solar Thermal Power Plant(s) (STPP) at similar temperatures.  

The performance of four solar collector technologies was compared: flat plate, 

evacuated tube, Linear Fresnel (LF) and Parabolic Trough (PT). This comparison 

was limited to the normal incidence angles of irradiation. For this application, non-

concentrating technologies are not competitive.  

For non-normal incidence angles, annual simulations were limited to PT and LF at 

final feedwater heater temperatures. The actual aperture area of around 80 000 m2 

was used (50 MW thermal based on LF). On an equal aperture area basis, PT 

outperforms LF significantly. For the conventional North-South arrangement, LF 

needs to be around 53% of the specific installation cost (in $/m2 aperture area) of PT 

to be cost competitive 

A SAPG plant at Lephalale was compared to a stand-alone Solar Thermal Power 

Plant STPP in a good solar resource area, namely Upington, South Africa – 

Parabolic Trough solar collector fields of equal size were considered for both 

configurations. It was found that the annual electricity generated with a SAPG plant 

is more than 25% greater than a stand-alone STPP. If the cost of SAPG is taken as 

72% of the cost of a stand-alone STPP, this translates into SAPG being 1.8 times 

more cost effective than stand-alone STPP. Furthermore, SAPG performs better in 

high electricity demand months (South African winter – May to August). 

Stand-alone STPP have been adopted in South Africa and are currently being built. 

This was achieved by the government creating an attractive environment for 

Independent Power Producers (IPP). Eskom, the national power supplier, is currently 

investigating solar boosting at existing Eskom sites. This report argues that on a 

national level, SAPG, specifically solar preheating of feedwater, is a more viable 

solution for South Africa, with both its significant coal base and good solar resource.  
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Opsomming 
 

Son ondersteunde krag generasie (SOKG) kan gesien word as sinergie van sonkrag en 

fossiele brandstof aanlegte – dit voeg die omgewings voordele van die eersgenoemde 

en die grote, effektiwiteit en betroubaarheid van die laasgenoemde by mekaar. SOKG 

opper groot potensiaal vir koste effektiewe gebruik van son energie op 

nutsmaatskappyskaal en kan die aanvaarding van sontermiese energietegnologieë in 

die kort en medium termyn versnel, veral in lande met beduidende kool reserwes en 

goeie sonkrag voorkoms  soos Australië, China, Verenigde State van Amerika, Indië 

en Suid-Afrika. 

SOKG impliseer die vervanging van aftap stoom in die regeneratiewe Rankine krag 

kringloop.  Kragstasie simulasies was gedoen met die gebruik van weer data van 

Lephalale, Suid-Afrika (Matimba kragstasie). Met die toename van die sonveld 

uitlaat temperatuur kon oorhoofse son-na-elektrisiteit effektiwiteit vasgestel word, 

wat hoër is as die van alleenstaande sontermiese krag stasie (STKS) by soortgelyke 

temperature. 

Die effektiwiteit van vier son kollekteerder tegnologieë was vergelyk:  plat plaat, 

vakuum buis, lineêre Fresnel (LF) en paraboliese trog (PT). Die vergelyking was 

beperk tot normale inval van bestraling. Vir hierdie toepassing is nie-konsentreerende 

tegnologie nie mededingend nie.   

Vir nie-normale inval hoeke was jaarlange simulasies beperk tot PT en LF by finale 

voedingswater temperatuur. Die werklike opening area van omtrent 80 000 m2 was 

gebruik (50 MW termies gebaseer op LF). By gelyke opening area, uitpresteer PT LF 

beduidend. Vir die gebruiklike Noord-Suid rankskikking benodig LF omtrent  

53% van die spesifieke installasie kostes (in $/m2 opening area) van PT om kostes 

mededingend te kan wees. 

‘n SOKG aanleg by Lephalale was vergelyk met alleenstaande STKS in die goeie son 

voorkoms gebied van Upington, Suid-Afrika – Paraboliese trog kollekteerder velde 

van gelyke grote was oorweeg vir al twee konfigurasies. Dit was gevind dat die 

jaarlikse elektrisiteit gegenereer vanaf SOKG meer as 25% is as die van alleenstaande 

STKS. Indien SOKG oorweeg word met 72% van die kostes van alleenstaande STKS, 

dan beteken dit dat SOKG 1.8 keer meer koste effektief is as alleenstade STKS. 

Verder, SOKG presteer beter in die hoer elektrisiteitsnavraag maande (Suid-

Afrikaanse winter – May tot Augustus). 

Alleenstaande STKS is gekies vir Suid-Afrika en word tans gebou. Dit is bereik deur 

dat die regering ‘n aantreklike omgewing geskep het vir onafhanglike krag 

produsente. Eskom ondersoek tans SOKG by bestaande Eskom persele. Hierdie 

verslag beweer dat op nasionale/Eskom vlak, SOKG, besonders son voorverhitting 

van voedingswater, meer haalbare oplossing is vir Suid-Afrika met sy beduidende 

koolreserwes en goeie son voorkoms.   
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SECTION  

AAAA    
Introduction 

1. Introduction 
 

The world’s energy demands are increasing exponentially. These needs have been met 

with fossil fuel derivatives in recent times. Although conflicting estimates of fossil fuel 

reserves have been made, the fact remains that these reserves are depleting. This and 

the increase in energy demands will lead to energy requirements not being met. The 

current energy generation setup is unsustainable. 

More than 80% of the world’s primary energy supply is from fossil fuels (IEA, 2012). 

This dependence is even greater in South Africa where more than 90% of electricity 

generation capacity is coal fuelled (Eskom, 2012). Fossil fuels have and continue to 

provide a cheap and reliable energy source. Recent research has highlighted that 

these benefits come at a cost, for instance the release of Greenhouse Gases (GHG) 

into the atmosphere - a contributing factor to climate change. 

The harnessing of renewable energy (RE) resources has been identified as a 

sustainable energy alternative. However, the relatively low energy intensity, 

technology immaturity and/or intermittency of RE forms make these alternatives 

costly. There is an on-going pursuit to reduce the costs of RE technologies through 

improved technological developments and mass production. This in conjunction with 

increasing ‘conventional’ energy costs are making RE technologies more attractive. 

Solar energy technologies (abbreviated to simply ‘solar’ hereafter) specifically have 

gained much attention as a viable solution for large scale power generation. With 

solar, as with other RE forms, intermittency of supply needs to be addressed. A 

viable solution to address dispatchability is the integration of solar thermal plants 

into conventional fossil plants – Solar Assisted Power Generation (SAPG)1 can be 

seen as a synergy of solar and fossil plants, combining the environmental benefits of 

the former and the scale, efficiency and reliability of the latter. SAPG offers great 

potential for cost effective utilization of solar energy on a utility scale and could 

accelerate the adoption of solar thermal energy technologies in the short and medium 

term, especially in countries with a significant coal base and good solar resource such 

as Australia, China, United States, India and South Africa. It is therefore not 

surprising that the national power supplier Eskom has shown interest in this 

technology. 

                                           
1 Other terms such as solar boosting, solar augmentation and solar aided are commonly 

used 
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1.1 Motivation 
 

The three pillars to a more environmentally friendly energy solution are: energy 

efficiency, renewable energy technologies and cleaner technologies. In general, energy 

needs to be both used more wisely and the generation thereof needs to be substituted 

with renewable energy sources. This substitution is a prerequisite for sustainable 

development. 

There are various ways of integrating solar thermal energy into fossil power plants, 

for instance: 

• solar production of main steam (high pressure steam) 

• solar production of intermediate steam 

• solar preheating of feedwater 

The latter is the most effective means (Petrov et al., 2012, Siros et al., 2012). This is 

not surprising as solar preheating of feedwater is achieved at lower temperature 

ranges than main and intermediate steam production. Only solar preheating of 

feedwater is considered in this work and is referred to as SAPG throughout the text. 

SAPG is the replacement of bled-off steam in a Regenerative Rankine power cycle. 

The bled-off steam is extracted from the steam turbine. This is used to preheat the 

boiler’s feedwater. The overall cycle efficiency is increased at the cost of reduced 

steam flow through the steam turbine and thus lower work output is achieved. SAPG 

preheats feedwater with solar thermal energy, thereby supplementing turbine 

extracted steam and thus work output can be increased (boosting mode) or fuel 

consumption can be reduced (fuel saver mode).  

Numerous authors have shown with energy and exergy analysis that solar thermal 

energy is more effectively employed in SAPG than in stand-alone Solar Thermal 

Power Plants (STPP) (Petrov et al., 2012, Yang et al., 2011, Gupta & Kaushik, 

2010). Some of the other advantages of this synergy are given by Hu et al, (2010): 

• SAPG can be integrated into existing power stations and therefore at a 

relatively low implementation cost. The same environmental and social 

benefits are achieved as with stand-alone STPP 

• SAPG is run in parallel to conventional power plants with minimal risk of 

operation disturbances 

• Conventional power plants provide storage components to address 

intermittency of solar energy 

• SAPG can be implemented in a modular manner 

• Feedwater preheating has various heating requirements in terms of quantity 

and quality. The latter allows for low temperature solar collectors to be 

implemented.  
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1.2  Research objectives 
 

This report aims to investigate SAPG in terms of feedwater heating. Similar efforts 

have been performed by Yan et al. (2010). However, certain constraints and 

complexities of power plant modelling were not included and not within the South 

African context. This study aims to: 

• enhance the level of power plant modelling, specifically boiler limitations, 

variable condenser pressure and solar field complexities 

• consider various solar collectors 

• perform hourly annual simulations 

• consider the South African solar resource  

• compare SAPG to stand-alone STPP 

Following a generic steady state thermal power plant model, a case study of the 

integration of flat plate, evacuated tube, Linear Fresnel and Parabolic Trough solar 

collectors into a power station (600 MW electric) will be used to portray the 

potential capabilities of SAPG. 

 

1.3 Project outline 
 

This section presents the basic layout of this project and provides a short description 

for each chapter. This report is divided into three main sections. 

 

Section A: Introduction 

In Chapter 1, a brief introduction to the field of renewable energy, specifically SAPG 

is given. The research objectives and the project outline are described. A literature 

review is presented in Chapter 2 to provide a basis for this project. 

 

Section B: Modelling 

Modelling of SAPG is investigated beginning with a basic Rankine cycle. The chapter 

is concluded with a SAPG model. 

 

Section C: Data Presentation and Discussion 

This section presents the results, conclusions and recommendations that stem from 

the work done.  
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2. Literature review 
 

Firstly, basic modelling of a conventional fossil fired power plant based on a Rankine 

cycle is presented. Recent studies of SAPG conclude this section.  

 

2.1 Power cycles 
 

Steam is the most common working fluid used in vapour power cycles. The preference 

of steam is due to its attractive properties such as abundance (high availability), 

affordability and good heat transfer characteristics, for instance high enthalpy of 

evaporation and high specific heat. A steam power plant is an example of a heat 

engine with water and steam as working fluid. Heat 
�	�
��� is added to working 

fluid in a boiler and heat 
�	�
���� is rejected from working fluid in a condenser, 

Figure 1. Work is achieved as working fluid  the cycle.  

 

Figure 1: Heat engine layout 

2.1.1 Carnot cycle 

The most efficient cycle operating between two temperature levels is the Carnot 

cycle. This is the ideal case. It considers heat input (process 2-3 in Figure 1) and 

rejection (process 4-1) as reversible and isothermal, and compression (process 1-2) 

and expansion (process 3-4) as isentropic (constant entropy). Figure 2 shows a T-s 

diagram of a Carnot cycle. The efficiency of such a system is dependent on the 

temperatures of heat source and sink, Eq. 1. For instance, consider a boiler operating 

at 300°C (573K) saturated steam and a heat sink of 50°C (323K). This equates to a 

Carnot efficiency of 0.44. 

Some of the realities that are not included in the Carnot cycle are: within process 3-4, 

the steam turbine will need to handle ‘wet’ steam with low quality. The liquid 

droplets can be a source of serious erosion of blades. Steam quality 
 of above around 

90% is typically required. For the compression process 1-2, a compressor needs to 

handle two phases. This is not practical. In short, the Carnot cycle should be seen as 

the upper limit and actual efficiencies are significantly lower. 
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2.1.2 Rankine cycle 

The impracticalities of the Carnot cycle can be addressed by superheating the steam 

in the boiler, therefore point 3 moves from the saturated vapour line into the 

superheated vapour region, as shown in Figure 3. Furthermore, process 4-1 is 

condensed to the saturated liquid line. The former addresses steam quality and the 

latter allows pumping of liquid only, which is significantly less energy intensive than 

pumping a liquid vapour mixture.  

The mentioned cycle is ideal as irreversibilities within individual components and 

connecting piping are omitted. For instance, fluid friction and heat losses are two 

common sources of irreversibilities. Therefore, pumps (typically the feedwater pumps 

of the boiler) need to raise the liquid pressure sufficiently above the ideal cycle 

pressure. Furthermore, the temperature after the boiler needs to be sufficiently higher 

than the ideal cycle temperature. To cater for irreversibilities within the pump and 

turbine, isentropic efficiencies are included, typically around 85% for both. The 

effects of these efficiencies are displayed in Figure 3 (right). As liquid water is near 

incompressible, the effect of pump isentropic efficiency on the T-s diagram is not 

noticeable. An exploded view of T-s diagram displays this effect in Figure 4. 

 

 

�� !��� = 1 −	
%&,(

%),*
   

 T in Kelvin           

 

 

 

 

(1) 

Figure 2: T-s diagram of Carnot cycle   
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Figure 3: T-s diagram of the ideal (left) and Rankine cycle including isentropic 

efficiency for a pump and turbine 

 

 

 

Figure 4: T-s diagram displaying isentropic efficiency for pump (exploded view (t – 

theoretical and r – real/actual)) 

 

An example of a practical Rankine cycle is presented in Figure 5. The Carnot, ideal 

and practical Rankine thermal cycle efficiencies for the example are 64.5, 43.6 and 

36.1% respectively. It should be noted that the thermal efficiency of the boiler is not 

included; therefore the conversion of fuel to thermal energy is omitted. For utility 

boilers firing coal this is typically above 85% based on Gross Caloric Value (GCV) of 

fuel. 
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To improve the efficiency of the Rankine cycle a basic principle exists, namely to 

increase the average temperature at which heat is transferred to the working fluid 

and decrease the average temperature at which heat is rejected from the working 

fluid. This is realized by means of: 

• increasing boiler output temperature 

• decreasing condenser pressure 

• increasing boiler pressure 

There are practical limitations to achieving these. Material limitations to increasing 

boiler temperature and pressure are examples of such constraints. With elevated 

temperatures superheaters need to incorporate more ‘exotic’ and therefore more 

expensive materials. For the condenser pressure, atmospheric conditions and 

availability of cooling media are limitations. To this extent, and as a power plant 

consists of various components, it needs to be optimised as an integrated system 

reducing the practical limitations, still keeping costs as the ultimate consideration.  

Figure 5: Schematic (left) and T-s diagram of practical  Rankine cycle (Cengel 2002) 

 

2.1.3 Reheat Rankine cycle 

It was stated in a previous section that a means to increase the overall power plant 

efficiency is to raise the boiler operating pressure. This would require higher capacity 

feedwater pumps. Additionally the cost of water treatment increases substantially 

with pressure. To raise the boiler pressure is achievable and is currently employed. 

However, due to the increased pressure before the stream turbine, unacceptable 

moisture content in steam may be encountered in the final stages of the turbine. For 

instance, if the turbine input pressure is raised from 30 to 150 (bar)2 and in both 

cases the steam is superheated to 600°C, and assuming isentropic expansion, the 

moisture content of steam is increased from 8.6% to 19.6%. As mentioned, liquid 

droplets can be a source of serious erosion of turbine blades and possibly result in 

equipment failure. 

                                           
2 If not indicated otherwise then pressure is given as absolute 
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To increase the temperature of superheated steam accordingly with increasing 

pressure would resolve the steam quality issue. For instance, for the example given to 

keep steam quality constant the temperature would need to be increased from 600°C 

to 938°C. This is problematic due to metallurgical limitations.  

The industry solution is reheating. Steam is partially expanded in high pressure 

stages of the turbine then intermediate pressure steam is reheated in the boiler and 

then expanded in lower pressure stages (Figure 6). Reheat temperature is similar to 

inlet temperature of first stages. With reheating, the average temperature at which 

heat is added is increased and thus efficiency is increased. It should be noted that 

this same efficiency improvement could be achieved by simply raising the turbine 

inlet temperature. 

Reheating is commonly implemented in utility sized power plants. The optimum 

reheat pressure is around ¼ of high pressure (HP) turbine inlet pressure but can vary 

from 0.2 to 0.4 (Cengel & Boles, 2002, Habib et al., 1999). The increase in efficiency 

is around 5% for first stage and approximately half for subsequent stage(s). Double 

reheat is used only for super-critical (above 221 bar) power plants (Cengel & Boles, 

2002). 

 

2.1.4 Regenerative Rankine cycle 

Previous sections discussed efficiency improvements by means of increasing 

temperature and pressure of superheated steam inputs to the steam turbine. The 

Regenerative Rankine cycle increases the average temperature at which heat is added 

by increasing the boiler input temperature. This is achieved with feedwater 

preheating. Steam is extracted from the turbine and used to heat feedwater. This 

reduces the amount of work generated by the turbine as steam is redirected from 

expanding further. This sacrifice is for the increased efficiency of the overall power 

cycle. Additionally, regeneration allows for deareation of the feedwater and reduces 

the large volume flow rate (due to relative low densities) of the final stages of the 

turbine. Regeneration is used in all modern power plants. 

The feedwater preheating with extracted steam from the turbine is achieved with 

direct (open) or closed feedwater heater (FWH). A direct FWH is a mixing chamber 

where feedwater and extracted steam come into direct contact. This promotes 

favourable heat transfer characteristics and is simple and affordable. The two streams 

need to be at the same pressure and one pump is required per direct FWH. A 

deareator is an example of a direct (open) FWH. 

With closed FWHs the two streams are separate and therefore do not need to be at 

the same pressure and thus do not require additional pumps. However, mixing is less 

intimate and therefore less effective and the heater is more complex and costly. 

Modern power plants employ combinations of direct and closed FWH. 
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2.2 Solar Assisted Power Generation (SAPG) 
 

Solar Assisted Power Generation (SAPG) is the replacement of bled-off steam in a 

Regenerative Rankine power cycle with solar augmentation. SAPG, specifically 

through feedwater heating, preheats the feedwater with solar thermal energy and 

thus work output can be increased or fuel consumption can be reduced. 

The overall efficiency of a power plant is dependent on, inter alia, the temperature of 

the heat source – efficiency improves with increasing temperature. For this reason few 

attempts have been made to employ low or medium solar heat for power generation. 

With SAPG, the heat source temperature is not limited by the solar input 

temperature. Thus, SAPG is an effective way to utilise low or medium solar heat for 

power generation (Yang et al., 2011).  

Despite the apparent gains to be had countries, with the exception of Australia, have 

been conservative in adopting projects in the field of solar preheating of feedwater. 

The Liddell solar boost venture in North-South Wales (NSW), Australia by Novatec 

is one the first large scale commercial projects of the integration of a solar thermal 

technology with a conventional power plant (Novatec Solar, 2012). Direct Steam 

Generation (DSG) Linear Fresnel solar technology is employed and incorporated into 

the HP feedwater preheater. Within a year the complete project was built and 

integrated into a conventional 2 000 MW electric coal fired power plant and has been 

operational since March 2012 (Paul et al., 2012). 

The Cogan Creek solar boost project in Queensland, Australia by CS Energy will be 

the largest SAPG in the world – a 44 MW thermal Compact Linear Fresnel (CLF) 

solar technology solution provided by Areva (Kogan Creek Solar Boost Project, 

2012).  

SAPG projects in the field of solar preheating of feedwater are being realised on a 

large scale.  SAPG is especially relevant to South Africa with its significant coal base 

and good solar resource. It is therefore not surprising that Eskom issued a request for 

information (RFI) for solar boosting in October 2012 (Eskom, 2012b). The two main 

objectives of the RFI are to inform the Engineer Procure Construct (EPC) services of 

Eskom’s intentions to roll out solar augmentation at Eskom sites, and to gather 

information on the capabilities of industry to achieve this.  

The preheating of boiler feedwater with solar thermal energy is investigated in this 

work. Furthermore, SAPG is compared to stand-alone STPP. The ‘tools’ to 

undertake the investigation and comparison are developed in Section B.  
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SECTION  

BBBB    
Modelling 

 

Section B is sub-divided into two parts, namely a steady state thermal power plant 

model (Section 3) and a solar assisted power generation model (Section 4). 

3. Steady State Thermal Power Plant Model 
 

Most utility power plants utilize reheating and feedwater heaters, which employ 

regenerative measures. Typically, there are five to seven closed FWH’s and one open 

FWH acting as the deareator – three to four low pressure (LP) FWHs downstream 

and two to three high pressure (HP) FHWs upstream of the deareator, as shown in 

Figure 6. 

To investigate Regenerative Rankine cycles a simplified power plant was modelled. 

This was executed in MS Excel and limited to steady state.  

 

Figure 6: Schematic of a 200 MWel power plant (Yan et al., 2010) 
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3.1 Modelling 

3.1.1 Software tool 

MS Excel was used to model steady state behaviour of a generic power plant. The 

freely available Excel add-in ‘Water97_V13’ was used. This add-in allows the 

formulation of water and steam properties as authorised by the International 

Association for the Properties of Water and Steam (IAPWS).  The forward equations 

are integrated into the Excel add-in. For example, the entropy and enthalpy are 

calculated by inputting temperature in Kelvin and pressure in bar absolute (bar). 

The backward equations are not incorporated; therefore, initially temperature could 

not be calculated from enthalpy or entropy with known pressure. The backward 

equations were programmed into the original add-in’s Visual Basic source code – 

IAPWS documentation used for correlations (IAPWS, 2007). The program used to 

calculate water/steam properties was tested and verified with numerous test values 

provided. 

3.1.2 Components 

The following components which are standard to power plants with steam turbines 

were integrated into a whole-plant model: 

• Boiler – with a furnace, waterwalls, drum(s), evaporative bank, superheater, 

reheater, economisers and air heaters 

• Steam turbine – extraction condensing type with high pressure, intermediate 

and low pressure sections3 

• Electrical generator – seen as a unit with a gearbox 

• Condenser – heat exchanger between turbine exhaust steam and cooling 

water from cooling towers (either wet or dry) 

• Feedwater system – feedwater pumps and heaters 

A sequential approach is followed. The output of one component is taken as the input 

of the downstream component – no heat or pressure losses are taken for 

interconnecting piping. Heat and mass balances (HMB) are performed with efficiency 

analysis.  

3.1.3 Description 

The scenario selection inputs are given in Table 1, the state specifications in Table 2 

and the component efficiencies in Table 3.  In Table 1, the feedwater heating  is set 

to 0 where no heating occurs and the boiler feedwater temperature equals the 

condenser outlet temperature plus the temperature rise over the pump and 1, the 

maximum value. For an infinite number of FWHs the optimal feedwater temperature 

is the saturated temperate of the boiler drum (Haywood, 1949). This is directly 

related to the pressure inside the drum, for instance at a 160 bar the saturation 

temperature is 347°C.  

 

                                           
3 Back pressure type steam turbines are typically used with cogeneration plants 
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Table 1: Steady state thermal power plant model inputs – scenario selection 

Scenario inputs options 

value used             

(Section 3.1.3 

example) 

Reheating on/off on or off on 

Feedwater heaters   

   Number of FWH 1 - 7 2 

   Ratio of heating 0 - 1 0.3 

 

 

Table 2: Steady state thermal power plant model inputs - state specifications 

State inputs value used 

Boiler  

   outlet steam temperature 550°C 

   outlet steam pressure 160 bar 

   reheat temperature 550°C 

   reheat pressure 40 bar 

Condenser pressure 0.1 bar 

 

 

Table 3: Steady state thermal power plant model inputs - efficiencies 

Efficiency inputs value used 

Turbine isentropic 0.85 

Pump isentropic 0.75 

Heat exchanger (FWH) 0.95 

Electrical generator (overall) 0.98 
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It should be noted that power plant efficiency mentioned thus far is thermal 

efficiency. For fuel to electric efficiency the boiler efficiency needs to be included. The 

boiler efficiency is inversely proportional to the outlet flue gas temperature 

(temperature at which flue gas (combustion gases) exits the boiler). A limitation to 

reducing this temperature to increase boiler efficiency is the dew point temperature. 

The dew point temperature is defined as the temperature at which the combustion 

gases are saturated with sulphuric acid (Singer, 1991). This establishes a corrosive 

environment and should be avoided. The dew point is proportional to the sulphuric 

acid content (SO3/H2SO4) which depends on the sulphur content of fuel. 

The boiler feedwater is typically not heated to more than around 250°C (Singer, 

1991, Kitto & Stulz, 1992) – although it can be raised higher for super and ultra-

super-critical plants. 250°C was used as the limit to boiler feedwater temperature 

(bottom left quadrant in Figure 7 is valid in terms of boiler feedwater final 

temperature. For condenser pressure of 0.1 bar, the ratio of heating is graphically 

displayed in Figure 7. The ratio of heating is taken relative to the optimal feedwater 

temperature for an infinite number of FWHs, namely the saturated temperature of 

the boiler drum (in this case 347°C). Note the ratio is calculated with enthalpy, 

hence not linear on temperature basis. In this case the ratio of heating is limited to 

0.6 (250°C). 

To describe the model, a basic reheat and regenerative Rankine cycle with two 

indirect feedwater heaters is used – refer to Figure 8. To display water/steam 

properties at various points in the power plant, the following information is provided: 

pressure in bar, temperature in °C, enthalpy in kJ/kg and mass flow rate in kg/s. In 

Figure 9(a) – point t5 of Figure 8 is used. For steam extracted off the turbine, two 

additional properties are included, namely the saturation temperature and steam 

quality 
, as shown in Figure 9 (b). The former is used for FWH calculations 

(described later in this section) and the latter needs to be monitored to ensure steam 

is of sufficient quality (not too ‘wet’) – typically above 0.9. 

 

Figure 7: Graphical description of ratio of heating 
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The scenario inputs listed in Table 1 (right hand column) are used. To allow the 

mass flow rates to represent percentage values, the mass flow rate is taken as 100 

kg/s. It should be noted that the model is linear and therefore efficiencies are not 

dependent on the power plant size.  

Boiler (b1 to t1) 

The output of boiler Superheater SH point t1 (top left of Figure 8) is taken as the 

starting point. The inlet temperature of the economiser is determined by the heating 

ratio, in this case 0.3 (boiler feedwater temperature of 150°C). The thermal input of 

the boiler, excluding the reheater, is calculated by simply taking the total enthalpy 

difference between the two stated points. For this model, part load behaviour of the 

boiler is not incorporated. The boiler (excluding reheater) heat input is calculated 

from: 

+,��-.!,�� =	�ℎ�/	 −	ℎ,/	� (2) 

 

Figure 8: Schematic diagram of heat and mass balances of a generic power plant 
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HP turbine (t1 to t2) 

To determine the isentropic efficiency �%�!, of the turbine, both high pressure (HP), 

intermediate (IP) and low pressure (LP) sections are taken as 0.85 (Table 3). It is 

acknowledged that the efficiencies typically increase with decreasing pressure sections 

– the LP section of turbine is more efficient than the HP section. For this 

investigation, a single/common isentropic efficiency is considered adequate for all 

stages. The turbine work output is determined by: 

1%�!,�2,��� =	�%�!,�2�ℎ�/	 −	ℎ�30	� (3) 

where ℎ30	is calculated with �3	 =	�/	– refer to Figure 3 

Reheater (RH) (t2 to t3) 

RH pressure and temperature are taken as ¼ of HP turbine inlet pressure (40 bar) 

and equal to the HP turbine inlet temperature (550°C) respectively. The reheater 

heat input is given as: 

+4�.�� =	 �ℎ�5	 −	ℎ�3	� (4) 

IP/LP turbine (t3 to t4, t5, c1) 

As mentioned, for optimal feedwater heating the enthalpy rise of each FWH is equal, 

therefore the outlet temperature of each FWH can be calculated. In this case, the 

inlet and required outlet temperature of the FWH system is respectively 47 and 

150°C, therefore the intermediate temperature outlet for FWH1 is 99°C. The turbine 

work outputs are calculated in a similar manner to the HP section. 

For extraction points t4 & t5 the pressures are determined by considering the 

required outlet temperature. To this outlet temperature, a temperature difference is 

added, in this case 5K. To this newly calculated temperature, the saturated 

temperature of extracted steam is related. For instance, with FWH1 the required 

outlet temperate is 99°C, therefore the extracted steam’s saturated temperature needs 

to be 104°C (99 + 5). From this, the required extracted pressure is determined, 

namely 1.16 bar. 

The mass flow rates of extracted steam are calculated – refer to FWH system (f2 to 

b1). The remaining flow is condensed. 

Condenser (c1 to f1) 

The condenser pressure is taken as 0.1 bar. The outlet of turbine c1 is condensed to 

saturated liquid f1 (
 = 0). The FWH system is of the down cascading type 

(condensed extracted steam of FWH is feed to downstream FWH where sensible heat 

exchange occurs) with some of the condensed extracted steam being feed into the 

condenser. Therefore the condenser has to reject this sensible heat to the atmosphere 

– in this case 0.4 MW thermal. Condenser heat rejected is calculated as:  
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+6��7.��� =	8ℎ6/	 −	ℎ9/	: (5) 

with ℎ9/	 taken as saturated liquid enthalpy based on pressure (in this case 0.1 bar) 

FWH system (f2 to b1) 

Of specific interest in this section is the FWH heating system, namely two indirect 

feedwater heaters. The efficiency of the FWH is taken as 95%; therefore heat losses 

are accounted for. From the above information, the extracted steam mass flow rate 

can be determined. It should be noted that an iterative approach is required as the 

cascading effect needs to be incorporated. The outlet enthalpy of FWH1: 

�9; =	�93 +	�=>��� �?8ℎ�?	 −	ℎ95	: + �=>��� 9?8ℎ9?	 −	ℎ95	:	 (6) 

where ℎ95	is calculated by stipulating �95 =	�93 + 5A. The calculations for FWH2 are 

similar but, in this case, no heating from the upstream cascade is included. The 

power plant thermal efficiency is calculated with: 

��B =	1�.�+��  (7) 

with 1�.� =	1��!,,,���,��� - −1C�DC,���,��� - and +�� =	+,��-.!,�� +	+4�,��. The former 

is simply the total turbine work minus the total pump work and the latter is the 

summation of heat inputs from the boiler (excluding reheater) and reheater. 

 

3.2 Model validation 
 

The model is a heat and mass balance exercise; therefore fundamental modelling is 

performed and should be inherently correct if the ‘accounting’ system is true. For 

realistic inputs and assumptions, the book ‘Thermodynamics: An engineering 

approach’, and specifically Chapter 9 (Cengel and Boles, 2002) was studied 

extensively . With reference to the literature and the author’s experience in HMB4 a 

good comparison was found over a wide range of inputs, as shown in Figure 10 – 

where there is no reheating and the condenser pressure is taken as 29 mm Hg (0.04 

bar). The data points (solid black markers) are referenced from a comprehensive 

eight volume series ‘Modern Power Station Practice’ (Sherry, 1971). Blue lines with 

hollow markers are model outputs. 

 

                                           
4 Direct comparison to commercial steam turbine suppliers’ HMB outputs were made 
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Figure 10: Improvement in thermal efficiency with feed water heating (no reheating 

(data points (blue markers) are referenced from Sherry, 1971)) 

 

The results of the steady state thermal power plant model are presented in 

Section 5.1.  
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4. Solar Assisted Power Generation (SAPG) Model 
 

The previous model provided insight to the limitations of regenerative Rankine cycle 

and established a basis for solar assisted power plant modelling. The power plant 

model utilized in this section is based on a 600 MW electric subcritical fossil power 

plant – the specifications are presented in Figure 11. The Sealing Steam Recirculation 

(SSR) was considered negligible and neglected (less than 0.5% total steam mass rate) 

as well as the heating influence of the oil and hydrogen coolers, vent condenser, and 

air ejector/vacuum pump (less than 1°C heating).  

 

Figure 11: Reheat regenerative cycle, in a 600 MW subcritical fossil power plant 

(Singer, 1991) 
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4.1 Solar field 
 

4.1.1 Software tool 

With SAPG, solar fields generate process heat to replace bled-off steam in a 

conventional regenerative power cycle. The modelling of these solar fields was 

achieved with National Renewable Energy Laboratory’s (NREL) System Advisor 

Model (SAM). SAM is a power plant modelling tool – an annual simulation consists 

of quasi-steady-state hourly calculations dependent on instantaneous weather 

conditions and the state of the plant from a previous time step. SAM was selected as 

it is a reputable tool and has capabilities to approximate transient behaviour of a 

solar field (due to intermittent solar resource). For a description of SAM models 

used, please refer to Wagner & Zhu, (2012) and SAM, (2009). 

 

4.1.2 Solar field integration 

There are two options for solar field integration into fossil fuel power plants, namely 

indirect and direct integration. Indirect integration requires an additional heat 

exchanger with a separate solar loop. With direct integration, the feedwater is heated 

directly in the solar field, as shown in Figure 12, System control is achieved with 

control valves CV1 and CV2. Additional pressure losses will occur over the solar field 

and a booster pump might be required. It is important that the solar field is 

integrated in parallel to the conventional feedwater heating system and therefore the 

dependency of the power plant operation on the solar field is reduced, with the solar 

field merely playing a complementary role. The direct arrangement is not seen to be 

problematic in terms of water treatment5. With modelling, the extracted steam mass 

flow rate is stipulated, however with solar augmentation any additional heating 

reduces the extracted steam required accordingly (constant heating over FWH).  

 
Figure 12: Direct integration of the solar field 

                                           
5 Personal communication with Denis Aspden, retired Eskom chemist, 22 October 2012 
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The deareator is an open FWH which performs oxygen removal. For this initial 

investigation, the extracted steam as an input to the deareator was not supplemented 

with solar heat. This FWH’s operation was left as is. Further investigations to the 

possibilities of solar heating opportunities around the deareator are required (outside 

the scope of this study). 

There are 6 FWHs. Since the deareator was not considered, 5 FWH stations are 

investigated, namely the 1st, 2nd, 4th, 5th and 6th stations shown in Figure 11 and 

Figure 13. The solar fields (SF) are named relevant to their associated FWH, for 

example SF1 supplements solar heat to FWH1 – refer to Figure 13.  

 

4.1.3 Solar collector technologies 

The required temperatures of SFs are presented in Table 4. Four solar collectors are 

considered, namely flat plate (FP), evacuated tube (ET), Linear Fresnel (LF) and 

Parabolic Trough (PT)6. Collectors for the said temperature ranges are proposed.  

 

Table 4: Temperature ranges and investigated solar collectors 

solar field 

(SF) 

approximate temperatures [°C] proposed collectors 

inlet outlet Average FP ET LF PT 

1 40 70 55 X X   

2 70 110 90 X X   

4 145 185 165  X X X 

5 185 220 205   X X 

6 225 250 240   X X 

  

                                           
6 Compound Parabolic Collector (CPC) is not a commercial technology and hence 

omitted. The temperature ranges are easily obtainable with line focus solar collector 

technologies. For spatial and economic reasons, point focus technologies were not 

considered, hence Central Receiver (CR) was omitted 
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4.2 Modelling 
 

4.2.1 Description 

The same steady state thermal power plant model of energy efficiency section is 

utilized. The user inputs are similar, shown in Table 5 to Table 7; noteworthy 

changes are the condenser pressure is not taken as constant but related to 

atmospheric conditions (‘dry’ cooling)7, Eq 8, higher isentropic efficiency (0.88) for 

the LP turbine section than the HP/IP (0.85) and higher FWH heat exchanger 

efficiency of 0.99. For SAPG, the solar field model is described in the previous 

section. A graphical representation of the model is presented in Figure 13. The 

condenser pressure is calculated from: 

	6��7.�0.! =		0 ���7,	 +	∆�� (8) 

where 	0 � is the saturation pressure, �7,	is the dry bulb temperature and ∆� is taken 

as 15K. Ambient condition variation more closely resembles real conditions and has 

been shown to have substantial influence on power plant efficiency (Vosoogh & 

Hajidavalloo, 2010). Unless otherwise indicated weather conditions for Lephalale, 

Limpopo, South Africa (-23.68° (S), 27.75° (E))8 are used as typical to the 

environment for utility power stations in South Africa. Weather files were generated 

with Meteonorm (2010). 

The plant was run in the solar booster mode. This has been shown to produce more 

rewarding results than in the fuel saving mode (Hu et. al, 2010) and assists Eskom’s 

current generation expansion projects. This allows the boiler to run in a more stable 

mode and may provide assistance with accommodating peak electricity demand in 

the South African context, Figure 25. Solar assistance should not be problematic in 

terms of accommodating the additional mass flow through the turbine and efficiency 

variation occurs due to: 

• Solar heating corresponds to periods of high solar radiation and thus, 

typically higher ambient temperatures which translates to higher condenser 

pressures (especially with dry cooling), hence higher turbine exhaust 

densities. Therefore, the volumetric flow rates are similar even though there 

is a higher mass flow rate with solar assistance. Furthermore, most modern 

power plants are capable of increased mass flow rates – around 10% above 

rated turbine output (Petrov et al., 2012). 

• The variation in turbine shaft output with solar assistance is limited – for all 

SFs on: less than 15 and 3% for respectively hourly peaking and annual total 

outputs.  This effect on turbine efficiency is assumed to be insignificant and 

neglected.  

                                           
7 South Africa is a water scarce country and typically employs dry cooling (vs. wet) for 

utility power generation 
8 Lephalale is home to Matimba and Mudepi (currently being built) power stations 
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Table 5: SAPG model inputs – scenario selection 

Scenario inputs options 

Reheating on/off on 

Number of FWH 6 

Ratio of heating 0.6 (≈250 °C) 

 

 

Table 6: SAPG model inputs - state specifications 

State inputs value used 

Boiler  

   outlet steam temperature 538°C 

   outlet steam pressure 173.7 bar 

   reheat temperature 538°C 

   reheat pressure 45 bar 

Condenser pressure related to dry bulb 

temperature 

 

 

 Table 7: SAPG model inputs - efficiencies 

Efficiency inputs value used 

Turbine isentropic  

   HP/IP 0.85 

   LP 0.88 

Pump isentropic 0.75 

Heat exchanger (FWH) 0.99 

Electrical generator (overall) 0.98 
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Figure 13: SAPG model representation (comparison to Figure 11 possible (solar off))
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4.2.2 Scenarios 

Three scenarios are considered, namely: 

a) Various SFs 

b) Various solar collectors 

c) SAPG vs. stand-alone STPP 

Various SFs 

When considering the turbine extracted steam, for instance A to F in Figure 14, it is 

evident that two conflicting criteria are present. In terms of turbine setup it is more 

beneficial to supplement extracted steam at a higher stage or row. This, however, 

requires higher solar field outlet temperatures which typically translate to lower solar 

field efficiency and higher cost. It is worthwhile noting that supplementing extracted 

steam above reheater extraction point (HP exhaust) permits for secondary energy 

efficiency benefits in the form of greater reheating. 

The individual solar fields were activated and corresponding solar boosting was 

recorded (one at a time). Solar boosting is considered as the additional electricity 

generated due to replacement of bled-off steam with solar process heat. To reduce 

computational time only one solar collector was used to compare various FWHs. The 

Linear Fresnel technology has been identified as a viable solution for solar process 

heat (IEA, 2005) and can operate at required temperate ranges. Additionally, the LF 

model in SAM allows for direct integration (DSG) as described in Section 4.1.2. A LF 

model with conventional N-S orientation was used as a base case. 

The SF is sized at approximately 50 MW thermal. This was based on LF technology 

and equates to around 80 000 m2 actual aperture area. SF heating is only activated if 

the solar field can provide more than 15% of heating capacity (7.5 MWh) over the 

hour considered. 

 

 

Figure 14: SAPG opposing 'forces' 
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Various solar collectors 

To allow comparison of other solar collectors, performance data was utilized, and is 

shown in Table 8. Efforts to source costs for collectors were problematic and were 

avoided. Only break even costs are provided. 

The efficiency data presented in Table 8 is graphically shown in Figure 15 – the SFs 

are indicated with vertical lines. The efficiency � incorporates optical and thermal 

losses and is calculated with: 

� = 	�E −	�/ F∆�� G −	�3 H∆�
3

� I (9) 

with ∆� = /
3 8�J=,��� + �J=,��	: − � D,	, � is the solar radiation [W/m2] and other 

constants are described in Table 8. � D, and  � were taken respectively as the 

average temperature during sunshine hours9 (23°C) and average Direct Normal 

Irradiation (DNI)10 (590 W/m2). For LF, ∆� = �� ,0�!,.! −	� D,	�  (Haberle et al., 

2002) with � ,0�!,.! assumed to be 50K above  �J=,��� (outlet temperature of solar 

field). �J=,��� is used in the graph to indicate applicable solar collectors more clearly. 

 

Table 8: Summary of solar collector performance (Kalogirou, 2003)  

    

performance (efficiency) � 

collector 

type motion 

concentra-

tion ratio 

indicative 

temperature 

range [°C] 

intercept 

efficiency �E 

1st order 

coefficient  �/ 
[W/m2K] 

2nd order 

coefficient �3 
[W/m2K2] 

FP stationary 1 30 - 80 0.8 4.78 -- 

ET  stationary 1 50 - 200 0.82 2.19 -- 

LF 1-axis tracking 10 - 40 60 - 400 0.61* 0* 0.00038* 

PT 1-axis tracking 15 - 45 80 - 400 0.762 0.2125 0.001672 

*(Haberle, 2002) 

                                           
9 The average temperature and DNI for Lephalale are respectively 19°C and 260 W/m2. 

This would inaccurately represent the ambient conditions ‘experienced’ by solar field  
10 For stationary collectors the solar component Latitude Tilt Irradiation (LTI) or Global 

Horizontal Irradiation (GHI) should be used. It was assumed that DNI is representative 

and for simplicity, was used instead. 
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Figure 15: Solar thermal collector efficiency (G = 590 W/m2) 

 

As expected the performance of non-concentrating collectors reduces considerably 

with increasing temperatures. PT is more efficient than LF over all temperatures 

considered – around 1.25 times. It should be noted that comparison was performed on 

aperture area and not land footprint. LF is more ‘compact’ than PT – about 20 to 

30% lower due to denser mirror arrangement (Dersch et al., 2009). If based on land 

footprint, PT’s lead over LF is reduced to around 1.2.  

It should be noted that performance is given in terms of solar radiation normal to the 

collector. Non normal operation is quantified with Incidence Angle Modifiers (IAM) 

which are unique to each solar collector type. Therefore, the findings of this section 

are only indicative, for more comprehensive results refer to Section 5. 

 

SAPG vs. stand-alone STPP 

From findings of the previous two scenarios (results presented in Section 5.2.1 and 

5.2.2), the most viable solutions are the concentrated solar technologies considered, 

namely PT and LF solar fields with N-S orientation providing process heat for FWH6 

(final FWH). Recently with the Renewable Energy Independent Power Producers 

Programme (REIPPP) in South Africa, three CSP projects have been awarded – two 

Parabolic Trough plants and one Central Receiver plant. All three projects are 

located in the Northern Cape Province. As stated, Central Receiver technology was 

not considered for solar preheating applications due to economic and spatial 

constraints. Hence, the said SAPG at a power station, Figure 16, is compared to a 

stand-alone STPP plant in a good solar resource area, Figure 17. The SM for a stand-

alone STPP plant was taken as 1 and the power block sized accordingly. 
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Figure 16: Relative size of the solar field to the Matimba power station 

 

For a direct comparison the SF was taken ‘as is’. Furthermore, the same power plant 

specifications were used (thermal efficiency of 0.44 @ 	6��7.�0.! = 68 kPa). It should 

be noted that this is a liberal estimate. The actual value is likely to be lower for 

stand-alone STPP due to, inter alia, unlike technologies (pulverised coal combustion 

vs. line focus solar collector) and different scales (utility (600 MWel) vs. industrial 

(25 MWel)). For instance, 0.44 thermal efficiency for a 25 MWel power block is 

optimistic. In short, from a SAPG perspective, the comparison is conservative.11 

 

Upington, Northern Cape, South Africa (-28.42° (S), 21.26° (E)) is a well-known area 

for its good solar resource, specifically DNI for CSP – the proposed 5 GW solar park 

is intended to be located in the vicinity12. Weather files were generated with 

Meteonorm. The annual DNI for Upington is 20% greater than Lephalale’s, the 

difference is less for GHI, Table 9. The average temperature is only considered for 

sunshine hours. Lower ambient temperatures are favourable for power generation 

efficiency.  

 

Stand-alone STPP is a complete power plant – solar field, power block, balance of 

plant, etc. A SAPG plant is essentially a solar field integrated into a power plant. In 

terms of cost there are substantial benefits to SAPG. NREL developed a component-

                                           
11 From calculations for stand-alone STPP with boiler outlet steam @ 400°C and 100 bar 

with reheater and 2 FWHs the thermal efficiency of power plant is approximately 0.37 @ 

	6��7.�0.! = 68 kPa. Therefore stand-alone STPP is around 15% less efficient (thermal to 

electric) than the utility power plant model used for SAPG. This is similar to data 

presented in Duffie & Beckman. (2006) for stand-alone STPP plant-  efficiency of 0.376 
12 http://www.energy.gov.za/SPark/default.html 
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based cost model for parabolic trough solar power plants for use with SAM (NREL, 

2010) – a cost assessment for a 103 MW Parabolic Trough with TES (dry cool 

option) is given in Table 10. For their assessment, a Solar Multiple (SM) of 2 was 

used. For the STPP stand-alone plant in Upington, no TES is assumed and hence the 

SM is reduced.  With no TES, it is typical to have SM of slightly over 1, thus 1.1 is 

used. Values for SM = 1.1 are derived from SM = 2 costs and presented in the right 

column of the table. Breakdown of costs is portrayed in Figure 18. SAPG is 72% of 

the cost of a stand-alone STPP (PT) system (SM = 1.1 with no storage). This same 

ratio is assumed for LF. 

 

 

Figure 17: Map of Southern Africa indicating the stand-alone STPP site (Upington) 

and the SAPG site (Lephalale) (Google Earth) 

 

Table 9: Summary of weather conditions for investigated sites (Meteonorm, 2010) 

 

DNI          

annual total 

GHI         

annual total 

Temperature 

average (sunshine 

hours) 

location  kWh/m2 kWh/m2 °C 

Lephalale 2250 2100 22.8 

Upington 2820 2280 25.4 

difference -20% -8% -2.6 

 

  

Stellenbosch University  http://scholar.sun.ac.za



29 

 

Table 10: Parabolic trough cost assessment (NREL, 2010), exchange rate used 1 USD 

= 9 ZAR (presented in thousands) 

 SM = 2 

SM = 1.1               

no storage 

Item Material labour total total 

Site 

improvements 
$       7 114 $     15 723 $       22 837 R     205 533 

R       205 

533 

Solar field $   212 135 $   284 253 $     496 388 R  4 467 492 R    2 457 120 

HTF system $     53 280 $     56 749 $     110 029 R     990 261 
R       544 

643 

TES $   202 638 $       5 438 $     208 076 R  1 872 684 -- 

Power block $   112 136 $     39 057 $     151 193 R  1 360 737 R    1 360 737 

EPCM costs 
  

$       29 001 R     261 009 
R       261 

009 

Project, land, 

misc 

  

excluded  excluded   excluded  

      Total 

estimate 
 $   587 303  $   401 220  $  1 017 524  R  9 157 716 R    4 829 043 

 

 

Figure 18: Cost breakdown of a Parabolic Trough power plant 
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4.3 Model validation 
 

The outputs of the power plant model compares favourably to results found in 

literature – refer to Section 3.2 and Table 11. Efforts to accurately represent the 

behaviour of an actual power plant were attempted. For simulations performed this 

was adequately achieved in steady state conditions. Transient effects are outside the 

scope of this work. 

The SF’s were simulated in SAM, namely the Linear Fresnel and Parabolic Trough 

(empirical model). For validation of these models please refer to work by Wagner 

(2012) and Price (2003), respectively. 

 

Table 11: Comparison of outputs from literature and developed model 

 

Feed water temperature [°C] Net electricity 

generated 

[MWel] 

 

Outlet FWH2 Inlet FWH 4 Inlet boiler 

Figure 11 (Singer, 1991) 111 148 254 608 

Model used 109 146 252 610 

difference 

   

0.33% 
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SECTION  

CCCC    
Results 

5. Results 
 

An investigation of SAPG was performed, specifically when applied to the preheating 

of boiler feedwater. This section presents the results of simulations as described in 

Section B pertaining to SAPG explicitly. A similar format as Section B is followed, 

namely: 

• Steady state thermal power model plant (regenerative measures) 

• SAPG 

� Various SFs 

� Various solar collectors 

� SAPG vs. stand-alone STPP 

 

5.1 Steady state thermal power plant model (regenerative 

measures) 
 

The thermal efficiency of a 600 MW electric subcritical (160 bar superheated steam 

at 550°C) fossil powered power plant with a single reheater and without regenerative 

heating was calculated as 0.38 @ 	6��7.�0.! = 100 kPa. Preheating of boiler 

feedwater with extracted steam from the turbine shows significant improvements 

with diminishing returns with additional number of FWHs, Figure 19. For a 7 stage 

FWH system raising the final feed temperature to 245°C, an improvement of around 

11% is achieved with 30% of turbine inlet steam being extracted. The effects of boiler 

feedwater preheating is shown in Figure 20 (non-regenerative vs. regenerative). The 

values are relative to the respective heat source totals, for instance if 100 units of 

heating (heat source – total) are provided with non-regenerative cycle then 38 units 

of total turbine shaft output (turbine – total) are generated, hence 38% efficiency.  

With regeneration, steam is extracted off the turbine to preheat boiler feedwater. 

Essentially, heat which was to be rejected to the atmosphere is now used for heating 

and thus waste is reduced. This is a more efficient use of energy. A further degree of 

this energy efficiency measure is cogeneration. 
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Figure 19: Efficiency improvements with preheating of boiler feedwater 

 

 

Figure 20: Effect of regenerative heating  
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5.2 SAPG 
 

5.2.1 Various SF 

A 50 MW thermal LF SF (approximately 80 000 m2 aperture area) with conventional 

N-S orientation was used as a base case to investigate various feed-in points, namely 

different FWHs – refer to Figure 13. Annual simulations with hourly weather data 

were executed. The efficiencies are shown in Figure 21, giving the annual totals. As 

expected there is a reduction in solar field efficiency with increasing average 

temperature of solar field �J=, KL. The thermal to electric efficiency increases 

significantly with increasing average temperature of the solar field �J=, KL and 

resulting overall solar to electric efficiency increases. This trend was also found by 

Siros et al. (2012).  For SF6 the supplemented extraction steam allows additional 

reheating. This further benefit is seen between SF5 and SF6. The solar to electric 

efficiency for all SFs are superior to stand-alone STPP at similar temperatures. SF6 

at slightly over 20% annual solar to electric efficiency is superior to a typical stand-

alone line focus STPP (for instance SEGS VIII solar to electric efficiency of 14% 

(NREL, 2008)). 

5.2.2 Various solar collectors 

It is evident that SF6 is superior to other solar assistance integration points when 

considering LF technology. To investigate further solar collectors the results of the 

previous section are incorporated with findings of Section 4.2.2 (Figure 15). Initially, 

the comparison is limited to normal incidence of irradiation (the sun in an optimal 

position, such as directly above the horizontal collectors). The influence of non-

normal incidence is presented subsequently. 

 

The relative performance (solar boost) for flat plate (FP), evacuated tube (ET) and 

Parabolic Trough (PT) are compared to Linear Fresnel (LF) at SF6, and shown in 

Figure 22. Non-concentrating technologies are not competitive. This is evident as 

thus far only concentrating technologies have been employed for feedwater heating. 

An example is the currently constructed LF solar booster for the supercritical Kogan 

Creek power plant discussed in Section 2.2. From these findings, in terms of 

feedwater heating, LF needs to be around 75% of the installation cost of PT to be 

cost effective.  

For non-normal incidence angles, annual simulations were limited to PT and LF at 

SF6. The actual aperture area of around 80 000 m2 was used. The monthly additional 

electric output (solar boost) is presented in Figure 23. A comparison of North-South 

(N-S) and East-West (E-W) orientation of the solar field is also included. The 

representative annual totals are shown on the right. On equal aperture area basis, PT 

outperforms LF significantly. On annual total basis PT is more than 30% and almost 

50% greater than LF for respectively N-S and E-W orientation. For conventional N-S 

arrangement LF needs to be around 53% of the specific installation costs (in $/m2 

aperture area) of PT in order to be cost competitive. This is similar to findings by 

Morin et al. (2012), Giostri et al. (2011) and Dersch et al. (2009).  
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Figure 21: Annual total efficiencies for various solar field integrations 

 

 

Figure 22: Performance per cost comparison for various solar collectors (relative to LF 

at SF6) 
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Figure 23: Performance comparison of parabolic trough and linear Fresnel (SF 6) 

 

The reasons for the vast difference is, inter alia, higher optical efficiency used (PT = 

0.75 to LF = 0.64)13 and better inherent ‘optical tracking’ capabilities of PT. The 

latter is best displayed with Incidence Angle Modifiers (IAM); IAM provide the ratio 

of transmittance-absorptance product at some angle relative to transmittance-

absorptance product at normal irradiance. See the simulated results from Morin et al. 

(2011) in Figure 24. With PT, the reflectors (trough) are normal to the sun in terms 

of the transversal plane, therefore transversal IAM �� is 1 (unity) except for large 

incidence angles due to shading of rows (in this case above 70°). For longitudinal 

IAM �� , PT and LF are similar. The tracking capabilities in the transversal plane for 

PT are superior to LF. This is shown with annual average differences in Figure 23 

(right).  

The influence of IAM is depicted by considering a clear summer day, Figure 26, and 

a clear winter day, Figure 27. An N-S arrangement is used, therefore for E-W 

arrangement �� becomes �� and vice versa. For winter day the dip in SF output for 

PT N-S coincides with high ��.  
SAPG might be appropriate for ‘peaking’ electricity generation. For this to be 

realized the output of solar boosting needs to coincide with electricity demand, as 

shown in Figure 25. This could be achieved with SF in terms of collector technology, 

field orientation and/or Thermal Energy Storage (TES). An example of such a 

consideration is favouring E-W orientation of SF rather than conventional N-S at the 

expense of less total annual solar boosting but greater output in winter months, 

depicted in Figure 23. 

                                           
13 Default values in SAM used 
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Figure 26: Solar thermal output from SF - clear summer day (20 December) 

 

 

Figure 27: Solar thermal output from SF - clear winter day (19 June) 
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5.2.3 SAPG vs. stand-alone STPP 

From findings of the previous two scenarios, the most viable solutions are the 

concentrating solar technologies considered, namely PT and LF solar fields with N-S 

orientation providing supplementing heating to FWH6 (final FWH). SAPG at a 

power station in Lephalale is compared to a stand-alone STPP plant in a good solar 

resource area, namely Upington. Two PT STPP plants in the Northern Cape were 

recently awarded with REIPP. Thus the solar collector technology considered is PT. 

For details refer to Section 4.2.2. 

 

The flow of energy, namely solar radiation on the solar field (solar field inlet), the 

solar field thermal output (solar field outlet) and the electricity generated for stand-

alone STPP and SAPG are compared in Figure 28 and annual totals are given. Due 

to a higher DNI annual total of the good solar resource area, the solar field inlet for 

SAPG is 0.8 of STPP. Due to higher thermal losses with STPP solar field’s elevated 

temperatures, the solar field outlet difference is reduced (solar field efficiencies 

(annual) of 50 and 58% respectively for STPP and SAPG). Ultimately, the annual 

electricity generated with SAPG out performs stand-alone STPP by more than 25%. 

Grupta & Kaushik (2009) found SAPG (preheating of feedwater) to be around a 1.5 

times more efficient use of solar thermal energy than stand-alone STPP. These 

findings are for the same site and therefore equal solar resource. If 20% more annual 

DNI total at stand-alone STPP site is factored in, then the findings are similar. 

 

In Section 4.2.2, it was found that SAPG is 72% of the cost of a stand-alone STPP 

(PT) system (SM = 1.1 and no storage). Therefore, a solar assisted HP feedwater 

heater system (SAPG) at an existing power plant is 1.8 times more cost effective 

than a stand-alone STPP (PT) in a good solar resource area. This is in line with 

expectations from an expert in the field of solar energy (Philibert, 2012)14. 

Furthermore, SAPG better performs in high electricity demand months (South 

African winter – May to August), shown in Figure 29. 

 

 

                                           
14 Author of 2010 IEA – CSP Roadmap, currently with ADEME, France  
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Figure 28: Energy breakdown of annual totals for stand-alone STPP and SAPG 

 

 

Figure 29: Comparison of electricity generated for stand-alone STPP and SAPG 
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6. Conclusions 
 

An investigation of SAPG was performed; specifically solar preheating of feedwater. 

Feedwater heating provides significant improvements with diminishing returns with 

additional number of feedwater heaters (FWHs). For a 7 stage FWH system raising 

the final feed temperature to 245°C an improvement of around 11% is achieved with 

30% of turbine inlet steam being extracted.  

Power plant simulations were performed incorporating weather data for Lephalale, 

South Africa (Matimba power station). With an increase in solar augmentation 

(supplement extracted steam with solar heat), of the field’s temperature, an increase 

in overall solar to electric efficiency was observed. The solar to electric efficiency for 

all SFs is superior to stand-alone STPP at similar temperatures. SF6 (final FWH) at 

slightly over 20% annual solar to electric efficiency is achieved at a solar field outlet 

temperature of around 250°C. 

The performance of flat plate (FP), evacuated tube (ET), Linear Fresnel (LF) and 

Parabolic Trough (PT) solar collector technologies were compared. This comparison 

was limited to normal incidence of irradiation. For this application, non-

concentrating technologies are not competitive.  

For non-normal incidence angles, annual simulations were limited to PT and LF at 

SF6. The actual aperture area of around 80 000 m2 was used (50 MW thermal based 

on LF). On equal aperture area basis, PT outperforms LF significantly. For a 

conventional N-S arrangement, LF needs to be around 53% of the specific installation 

cost (in $/m2 aperture area) of PT to be cost competitive 

The suitability of SAPG for ‘peaking’ electricity generation was discussed. With 

deliberation of SF in terms of collector technology, field orientation and/or Thermal 

Energy Storage (TES) peaking capabilities could be achieved. An example of such a 

consideration is favouring E-W orientation of SF rather than conventional N-S at the 

expense of less total annual solar boosting but greater output in winter months. 

SAPG at Lephalale was compared to a stand-alone STPP in a good solar resource 

area, namely Upington, South Africa - PT solar collectors were utilized for both sites. 

Ultimately, the annual electricity generated with SAPG is more than 25% greater 

than stand-alone STPP. If SAPG is taken as 72% of the cost of stand-alone STPP, 

this translates to SAPG being 1.8 times more cost effective than stand-alone STPP. 

Furthermore, SAPG better performs in high electricity demand months (winter 

months in South African context). 

Stand-alone STPP have been adopted in South Africa and are currently being built. 

This was achieved by government creating an attractive environment for Independent 

Power Producers (IPPs). On a national/Eskom level, SAPG, specifically solar 

preheating of feedwater, is a more viable solution for South Africa with its significant 

coal base and good solar resource.   
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7. Recommendations 
 

It is recommended that work on part load behaviour prediction of power plants by 

Mavromatis & Kokossis (1998) be incorporated to more accurately model power plant 

performance. Ultimately, to investigate the actual behaviour of a power plant, and 

specifically the response to variations, a transient model is required. This was beyond 

the scope of this work. A simulation tool such as Flownex has been utilized for such 

purposes in other research work. 

Further investigations into the effect of temperature levels and site location on solar 

field performance are recommended. These factors need to be isolated for a better 

understanding of solar field performance prediction. Furthermore, the trade-off 

between more advanced absorbers and the associated increased costs thereof could 

provide insight into lower cost solar collector technologies options, specifically for 

solar process heat. 

Thermal Energy Storage (TES) for the stand-alone STPP was not considered. 

Storage allows for better utilization of the power block and typically reduces the 

Levelized Cost of Electricity (LCOE). TES for stand-alone STPP should be included 

in further research. If storage is not prescribed then stand-alone Photovoltaic plants 

should also be considered. 

As CSP is still in early state of commercialization, especially Linear Fresnel (Richter, 

2012) cost estimations of solar collector technologies were problematic to obtain. 

However, cost is the driving factor and further efforts should be applied here. 

Collaboration with industry is a viable means to further this research.  
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