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SUMMARY 

A thermal power plant‟s efficiency is greatly dependent on the temperature of the 

saturated steam in the condenser. Wet-cooling provides low temperatures 

economically where water is readily available. Increasing the effectiveness of 

these wet-cooling towers through performance enhancement could result in a 

decrease in life cycle cost. Reuter  has found that the rain zone, often overlooked 

as a region for performance enhancement, can have a considerable effect on the 

performance characteristics of a cooling tower. 

In this thesis, the effect of installing a newly developed splash type grid below a 

conventional film type fill on the performance characteristics of the rain zone is 

investigated experimentally. The proposed grid reduces the mean drop size in the 

rain zone to enhance the performance characteristics. The following experimental 

performance tests are conducted in a fill test facility: film fill only, fill with rain 

zone, fill with rain zone and one layer of splash grids for different placements and 

inclination angles below the fill, fill with rain zone and two layers of splash grids 

for different placements below the fill. From the experimental performance 

characteristics, a Sauter mean drop diameter is calculated, which shows that a 

significant reduction in drop size is achieved by means of the grid.  

The experimental results are ultimately used in a natural draught wet cooling 

tower one dimensional performance model to determine the effect of different fills 

and the grid below the fill on the cooling tower re-cooled water temperature and 

range.  
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OPSOMMING 

„n Termiese kragstasie se doeltreffenheid is hoogs afhanklik van die temperatuur 

van die versadigde stoom in die kondensators. Nat verkoeling bied tans die laagste 

temperatuur wat ekonomies lewensvatbaar is waar water redelik beskikbaar is. 

Die verhoging in nat verkoeling torings se effektiwiteit deur die verbetering in 

werksverrigting kan „n daling in lewensiklus koste tot gevolg bring. Reuter het 

gevind dat die reёnsone, „n aansienlike effek kan hê op die werksverrigting 

karakteristieke van „n koeltoring. 

In hierdie tesis, word die effek van „n nuutontwikkelde  spatpakrooster onder ŉ 

konvensionele film tipe pakking op die werkverrigtingskarakteristieke van die 

reënsone eksperimenteel ondersoek. Die voorgestelde rooster verklein die 

gemiddelde druppelgrootte in die reënsone om sodoende die 

werkverrigtingskarakteristieke te verbeter. Die volgende eksperimentele 

werkverrigtingstoetse is gedoen in ŉ koeltoringpakking toetsfasiliteit.: 

filmpakking alleen, filmpakking met reënsone, filmpakking met reënsone en een 

laag van spatpakroosters vir verskillende plasings en hoeke onder die pakking, 

filmpakking met reënsone en twee lae van spatpakroosters vir verskillende 

plasings onder die pakking. Vanaf die eksperimentele 

werkverrigtingskarakteristieke, word daar ŉ Sauter gemiddelde druppeldeursnee 

bereken, wat toon dat ŉ noemenswaardige verlaging in druppelgrootte met behulp 

van die spatpakrooster verkry kan word. 

Die eksperimentele resultate word uiteindelik gebruik in ń een dimensionele 

natuurlik trek natkoeltoring werkverrigtingsmodel om die effek van die 

spatpakrooster onder die pakking in ŉ natuurlike trek nat koeltoering se 

herverkoelde water temperatuur en temperatuurverskil te bepaal.  
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CHAPTER 1 INTRODUCTION 

 Wet cooling towers 1.1

A natural draught wet cooling tower (NDWCT) as shown in Figure 1-1, rejects 

waste heat from re-circulating cooling water to the atmosphere and provides the 

lowest possible temperatures when using the atmosphere as a low temperature 

reservoir. It is a preferred option where water is readily available at low cost. 

Heated re-circulating cooling water, which is typically from a surface condenser- 

or process type heat exchanger, enters a wet cooling tower from the bottom and 

flows upwards in a riser before it is distributed to a grid of sprayers (Figure 1-2a). 

The sprayers spray the water as small drops onto the fill. The fill zone, which can 

either contain splash- (Figure 1-2b), trickle-(Figure 1-2c) or film fill (Figure 

1-2d), increases the water-air interfacial area, which is achieved by the water 

splashing, trickling or running down the fill as a thin film, depending on the type 

of fill. The type of fill used in cooling towers depends on several factors including 

the size of the cooling tower (existing towers), the hydraulic head available 

(existing towers), water quality, water temperature and cost. After the water 

passes through the fill zone it falls, under the force of gravity, through the so 

called rain zone as water drops with a polydisperse size distribution and falls into 

a water collecting pond from where it is pumped back to the surface condenser or 

process heat exchanger. 

 

Figure 1-1: Schematic of natural draught wet cooling  

The re-circulating water is cooled by ambient air which is drawn in at the bottom 

of the cooling tower due to a low pressure induced by buoyancy effects as a result 

of density difference between the air inside the cooling and the air outside the 
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cooling tower. This is known as natural draught. The low pressure can also be 

induced by fans (mechanical draught). The air enters the cooling tower, passing 

through the rain zone where between 10-20% of the heat and mass transfer occurs 

(Kröger, 2004). It then enters the fill zone, which can either contain splash-, 

trickle-or film fill, where most of the heat and mass transfer occurs. The now 

saturated to super saturated air leaves the fill zone, passing through the spray 

zone, water distribution system and drift eliminators. The drift eliminators remove 

any water drops that might have become entrained in the upward flowing air. 

After the air passes through the drift eliminators it flows through the remainder of 

the tower and exits to the atmosphere.  

 
a). Sprayer 

 
b). Splash fill 

 
c). Trickle fill 

 
d). Film fill 

 
e). Drift eliminators 

 

Figure 1-2: Wet cooling tower internals 

A NDWCT performance affects a power plant performance since it affects the 

turbine exhaust temperature i.e. condenser steam temperature. In a typical power 

plant water/steam cycle with a NDWCT re-circulating cooling water circuit, as 

shown in figure 1-3, a steam turbine exhausts wet steam to a surface condenser 

where the steam is condensed so that it can be pumped back to a boiler via 

feedwater heaters. This condensate is heated and turned back into superheated 

steam which is fed to a turbine to complete the power generation cycle. 

Reuter (2010) found that the gross efficiency of a typical modern coal fired-power 

plant increases between 0.3 to 0.5 % per 1
 
K decrease in turbine exhaust steam 

temperature i.e. condenser steam temperature.  

A temperature versus condenser heat load diagram for a typical wet cooled power 

plant system is shown in figure 1-4. It can be seen from figure 1.4 that the 

condenser steam temperature can be decreased by either decreasing the initial 

temperature difference (ΔTITD) and/or the tower‟s approach (ΔTApp). The initial 

temperature difference can typically be decreased by increasing the condenser 

heat transfer surface area and the cooling water mass flow rate to reduce the 

cooling water temperature rise. The approach can be decreased by either installing 

fill with better performance characteristics than the current installed fill, 
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decreasing the flow losses, increasing the size of the tower or increasing the 

performance of the rain zone.  

 

Figure 1-3: Schematic drawing of a typical power plant water/steam cycle and 

natural draught wet cooling tower re-circulating water circuit 

 

Figure 1-4: T vs Q diagram for a typical wet cooling system diagram 

Eskom (South Africa‟s parastatal power utility) NDWCT‟s of Eskom (which 

comprise approximately 75 % of its heat ejection systems) are currently under-

performing. The under-performance can be ascribed to various factors which 

include degradation of cooling tower internals as a result of lack of maintenance, 

ineffective water treatment and deteriorating water quality.  

The performance of the Eskom cooling towers can be improved by introducing a 

splash type grid beneath the currently installed fills to reduce the average rain 

zone drop size thereby increasing the air-water interface and thus the heat and 

mass transfer of this zone.  
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This thesis presents the effect of reducing the rain zone drop size by introducing a 

specially designed splash type grid below a conventional cross fluted film fill on 

the overall performance characteristics of a natural draught wet cooling tower. 

 Literature review 1.2

This literature review presents the theory and literature concerning NDWCT‟s, 

drop size reduction, splash grid design, rain zone performance modelling, fill 

performance testing and cooling tower modelling. 

1.2.1 NDWCT theory 

A NDWCT uses two mechanisms to transfer heat from the heated circulating 

cooling water to the atmosphere, namely sensible (convection heat transfer) and 

latent heat transfer (diffusion mass transfer). The sensible heat transfer is as a 

result of the temperature difference that exists between the water and the air and 

the latent heat transfer is as a result of a concentration difference between the air 

at the surface of the water and the free stream air. This is illustrated in figure 1-3 

and mathematically in equation 1-1, where the subscripts m and c is the heat 

transfer due to mass and convection respectively. 

           1-1 

According to Fick‟s law the mass transfer from a differential control volume is 

given by equation 1-2. 

   

  
             

1-2 

Where hd is known as the mass transfer coefficient.  

The energy thus required to evaporate this mass from the water surface to the 

adjacent air is given by equation 1-3. 

      
   

  
                 

1-3 

The enthalpy of the water vapour is given by the expression shown in         

equation 1-4.  

               1-4 

The sensible heat transfer is given by equation 1-5 

               1-5 

The enthalpy of the saturated air at the water‟s surface is given by equation 1-6 

               (           )              1-6 

Where the term cpaTw is the enthalpy associated with the dry air and 

wsw(ifgwo+cpvTw) the enthalpy associated with the water vapour in the air. 

Rewriting equation 1-6 to the expression shown below. 

                          1-7 
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The enthalpy associated with the free stream air away from the surface of the 

water is given by equation 

                         1-8 

Where the term cpaTw is the enthalpy associated with the dry air and w(ifgwo+cpvTa) 

the enthalpy associated with the water vapour in the air. 

By subtracting equation 1-7 from 1-8 and assuming the difference between the 

specific heats are negligible at the different temperatures they are evaluated at 

equation 1-9 is obtained. 

          (        )                  1-9 

Rearranging equation 1-9 to make (Tw-Ta) the subject equation 1-10 is obtained. 

      [                   ]       1-10 

Where cpma = cpa + wcpv 

Equation 1-1 can now be written as equation 1-11 after substituting equation 1-3, 

1-5 and 1-10. 

     0
 

      

            .  
 

      
/          1    

1-11 

The term 
 

      
 is known as the Lewis factor (Lef) and shows the relative rate of 

heat and mass transfer.  

It can be said that the enthalpy transfer from the water to the air is also the change 

in the enthalpy of the air from equation 1-10 we have equation 1-12 

    

  
 

 

  

  

  
 

  

  

  

  
[               (     )         ]  

1-12 

The area for a one dimensional model of a cooling tower can be written as 

            1-13 

Substituting equation 1-13 into 1-12 and assuming the Lewis factor is unity 

equation 1-12 reduces to equation 1-14. 

    

  
 

        

  
            

1-14 

The change in water temperature across a control volume over distance dz can be 

obtained by performing a mass and energy balance across a control volume, 

which is shown in figure 1-3. By combining the mass and energy balance and 

neglecting second order terms the expression below for the change in water 

temperature across a control volume of distance dz is obtained. 

   
  

 
  

  
.

 

   

    

  
   

  

  
/ 

1-15 
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Figure 1-5: Counter flow fill control volume (adapted from Kröger, 2004) 

Substituting equation 1-14 into 1-15 and assuming the evaporation rate is 

negligible equation 1-16 is obtained.  

   
  

 
  

  

 

   

        

  
            

1-16 

By rearranging equation 1-16 the expression shown in equation 1-17 is obtained. 

The term on the left is known as the transfer coefficient or Merkel number. 

   
        

  
 ∫

      

         

   

   

 
1-17 

The process of enthalpy transfer from the water to the air heats and saturates the 

air along the height of the tower resulting in a density difference between the air 

inside the tower and the air outside the tower. The buoyancy effect causes the air 

to flow through the tower. 
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Figure 1-6: Illustration of Merkel theory 

The air flow rate in a NDWCT is determined by the density difference between 

the air inside the tower and the air outside the tower. This buoyancy effect causes 

the draught through the tower. The draught through the tower can however be 

decreased as a result of flow losses in the cooling tower. The overall loss 

coefficient, which is defined as Total loss coefficient = Frictional losses + 

momentum losses + static losses and given in equation 1-18. 

     
 [              

          
                  ]       

 

    
 

 
1-18 

1.2.2 Drop size reduction 

The purpose of drop size reduction is to increase the air-water interface, which 

increases the rain zone‟s heat and mass transfer. 

Holland (1974) conducted tests on a tower devoid of fill with a water distribution 

system distributing the water drops evenly across the tower at a known drop size 

distribution. He found that a uniform drop distribution and a drop diameter of 

between 1- and 2 mm provide the highest performance. 

There are three modes of drop modification, i.e. splashing, dripping and cutting in 

a splash pack. Dreyer and Erens (1996) found that the slat width, the drop impact 

velocity on the grid and the position of the impact on the grid has a significant 

effect on the mechanism of drop break up when drops hits a slat. Splashing (also 

known as disintegration) occurs when the impact surface is relatively large 

compared to the incoming drop size and/or the impact velocity is high. Splashing 

produces a poly-dispersed drop size distribution and forms a mist which can be 

carried away by the incoming air. Dripping occurs when the drop size is relatively 

large compared to the impact surface or the drop velocity low. Dripping produces 

larger drop sizes compared to the incoming drop size. Cutting occurs when the 

impact surface is comparable with the drop size. This drop break up mechanism 

produces a more uninform drop distribution compared to splashing and smaller 
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drops compared to dripping. Hung and Yao (1999) conducted experiments on the 

impact of mono-dispersed droplets on finite cylindrical surfaces. They varied the 

droplet impact velocity and the size of the cylindrical surface and determined the 

effect on the drop break up. Their research was however limited to small droplets, 

with their reference droplet size at 350 μm and also testing droplet sizes of 110 

μm and 680 μm. They used stainless steel wire with a diameter of 113, 254, 381, 

508, 813, 1190, 1588 μm. The result was that most of the droplets either 

disintegrated or dripped.   

Steenmans (2010) conducted a study where he investigated the drop break up 

mechanism for a drop impacting on a single cylindrical surface. He took high 

speed digital images of drops after impact and determined the drop size 

distribution and average drop diameter. The drop falling height before impact, 

wire position, drop size, wire diameter, the drop offset from the wire centre line, 

wire shape, tension in wire and wire material were varied systematically to 

determine its effect on drop break up. Studies were aimed at producing the 

smallest average drop size after impact. The reference conditions for the 

experiments were a drop diameter before impact of 4 mm, falling height before 

impact of 500 mm, wire diameter of 2 mm, drop offset from wire centreline of     

0 mm, wire material of stainless steel, zero tension in the wire and a round shape. 

He found that the reference conditions produced a drop size of 1.93 mm after 

impact.  

The drop size before impact was varied between 2.7 mm and 5.5 mm. There was a 

gradual increase of drop size after impact with increasing drop size before impact. 

The result was that drop size before impact has an effect on the drop size after 

impact similar to the findings of Kröger (2004) and Terblanche (2008). Steenmans 

also found that drops deflect at an angle of 20
o
 after impact.  

Drop height before impact was varied between 200 mm to 800 mm in increments 

of 100 mm. The drop size after impact initially decreased with increasing height, 

reached an optimum of 400 mm and then increased for the remainder of the tests.  

The wire material was changed from stainless steel to nylon. The tension in the 

wire and the wire diameter were varied and found the 1 mm wire diameter and 0 

tension produced the smallest drop size after impact and the type of material had a 

negligible effect on the drop size after impact.  

The investigation was later expanded to multiple wire configurations and its effect 

on drop break up. A staggered pattern of single filament nylon 1 mm diameter 

wire and drop size reduction were investigated. The wires were placed at an angle 

of 15
o
 at a distance of 2.3 mm apart. This configuration produced a drop size after 

impact of 1.6 mm. Steenmans later used these parameters in designing a splash 

grid to place below the fill.   
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1.2.3 Splash grid design 

Several studies have been done, which include Terblanche et al. (2009), 

Oosthuizen (1995) and Steenmans (2010), in designing a splash grid to be placed 

under a conventional fill for reducing the rain zone drop size. The drop size in the 

rain zone is largely dependent on the fill above. Three types of fill are most 

commonly found in wet cooling towers, including splash, trickle and film fill. 

Terblanche et al. (2009) found the Sauter mean drop diameter, for which the 

definition is given in equation 1-19, below the fill to range between 5 and 6 mm 

for trickle- and film fill and 3.5 mm for splash fill. Modern power stations prefer 

the use of film fills since they achieve the highest performance per meter of fill. 

The use of film fills is however not conducive to high performance in the rain 

zone due to the larger drops exiting the fill. 

                               
    

    
 

1-19 

Methods for reducing the drop size and its effect on the performance of the rain 

zone below the fill region have been done in the past. Oosthuizen (1995) 

investigated the effect of a splash grid below a trickle fill on the drop size of the 

rain zone. The splash grid, which was made out of a course expanded metal grid, 

would reduce the drop size in the rain zone without contributing significantly to 

the total pressure drop. He did this by placing two layers of splash grid, spaced 0.1 

m apart, at various heights below the trickle fill.  He investigated the optimum 

distance i.e. the drop height before impact producing the smallest Sauter mean 

diameter drop size, of the grid below the fill, drop size distribution as well as the 

transfer characteristics associated with such a configuration. He found the Sauter 

mean drop diameter to be 4.05 mm for an optimum fill to grid spacing of 0.67 m. 

Terblanche (2008) also investigated methods to reduce the rain zone drop size and 

its effect on the performance of this zone. He measured the drop size distribution 

for horizontal grid which comprised of 3 mm wide, 12 mm high PVC slats spaced 

10 mm apart as well as expanded metal sheeting placed below trickle fill. He also 

determined the optimum distance between the fill and grid which was based on 

the smallest Sauter mean drop diameter obtained. He found the smallest Sauter 

mean drop diameter of 2.73 mm below a double slat grid configuration placed 0.8 

m below the trickle fill.   

Steenmans (2010) did several experiments on various parameters concerning 

single drop impacting on a single wire as discussed earlier. He used the results to 

design a grid. The grid consisted of a 910 mm x 910 mm steel frame, with metal 

strips either side of the frame. He used 1 mm Nylon string spanning the cross 

sectional area of the frame in a staggered pattern placed at an angle of 20
o
 with 

respect to each other, with fourteen wires per diagonal row, grid height of 73 mm 

and width between wire centres at 8.8 mm He tested the grid in a cross flow wet 

cooling tower test facility at various orientations to determine the smallest Sauter 
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mean drop diameter. The drop size was inferred from the experimental transfer 

coefficient. The smallest Sauter mean drop diameter was found to be 2.5 mm.  

1.2.4 Rain zone performance modelling 

The rain zone was previously ignored in the modelling of NDWCT due to its 

complexity to model. The rain zone contributes considerably to the overall 

transfer coefficient and can thus not be ignored. Several attempts have been made 

to include the contribution of the rain- and spray zone by modelling the 

aforementioned zones (Rish, 1961; Lowe and Christi, 1961; Missimer and 

Bracket, 1986; Sedina, 1992). Some even approached the modelling of the rain 

zone numerically (Majumdar and Singhal, 1983, Benocci et al., 1986; Benton and 

Rehberg, 1986), however these methods either proves to be only applicable for 

either counter-or cross flow. A rain zone is however combination of counter- and 

cross flow which is taken into account in the model developed by De Villiers and 

Kröger (1997). De Villiers and Kröger made the following assumptions in 

developing the model: no drop agglomeration, uniform water flow rate through 

the fill, uniform rain zone drop diameter, zero absolute drop velocity for drops 

entering the rain zone, the air velocity profile is not influenced by the falling 

drops and constant thermophysical properties throughout the rain zone.  

1.2.5 Fill performance testing 

Fill performance testing is used for generating correlations to describe the 

performance characteristics of fill. These correlations can for example later be 

used for modelling to determine the effect of the fill on the performance of a 

cooling tower.  

Experimentally determined correlations are currently the most accurate way to 

describe fill performance although attempts have been made to model the 

performance (Dreyer and Erens, 1995). There are several test facilities for fill 

testing and researchers who produce fill performance results, however neither the 

test facility nor the procedure and results are standardised and as a result cannot 

be compared directly with each other (Bertrand, 2009). The test conditions or data 

to produce the results are most often also not given to verify the correlations. 

Bertrand (2009) quantify to what accuracy, reliability and repeatability fill 

performance results, be produced in a 1.5 m x 1.5 m counterflow test facility at 

the University of Stellenbosch. He also gives the form of the correlations to use 

which  accurately accounts and describes the transfer- and loss coefficients as 

found and verified by Kloppers and Kröger (2003) and are given in equation 1-20 

and 1-21 respectively.  
              

    
     

   1-20 

             
    

       
    

   1-21 

The exponents in equations 1-20 and 1-21 are determent experimentally through 

multi variable linear regression.  
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1.2.6 One-, two- and three dimensional NDWCT performance modelling 

 One-, two- and three dimensional NDWCT performance modelling depends on 

the density difference between the air inside the tower and the air outside the 

tower at the same elevation. The flow rate is dependent on the various flow 

resistances due to the cooling tower internals, transfer characteristics of the rain, 

fill and spray zones and the cooling tower dimensions (Kröger, 2004).  

The Merkel method is still commonly employed for cooling tower analysis in one, 

two and three dimensional modelling. The more rigorous Poppe method is 

employed in situations where the assumptions made by Merkel are not valid 

especially hybrid systems where the outlet air cannot be assumed to be saturated. 

One dimensional modelling is still widely used in industry for the design of 

NDWCT (Reuter, 2010) due to its relative ease of use, low expense and relatively 

accurate results. The one dimensional models do not however take variation of 

radial flow, non-uniformities e.g. variation in packing height, shape of the tower 

and the effect of cross wind into account. Two and three dimensional model was 

introduced to account for the non-uniformities (Al-Waked and Behnia, 2005; 

Williamson et al., 2008; Reuter, 2010; Klimanek, 2013). These two- and three 

dimensional models however still make use of experimental data to account for 

fill performance characteristics.  

Williamson et al. (2008) conducted a study by comparing the difference in 

cooling range for a one- and two dimensional cooling tower performance models 

with different input parameters. They found a difference of 2% between the 

models.  

 Objectives 1.3

The main objective of this thesis is:  

 To experimentally evaluate the effect of installing a newly designed splash 

grid below a conventional packing cross fluted film fill on rain zone 

performance characteristics.  

 To investigate the effect of such a splash grid on full scale natural draught 

wet-cooling tower performance, using a one-dimensional performance 

model developed by Kröger (2004) and improved by Reuter (2010). 

 Motivation 1.4

The rain zone can contribute more to the overall heat and mass transfer, also 

known as the transfer coefficient and Merkel number, than is currently the case. 

The transfer coefficient of the rain zone can be increased by decreasing the Sauter 

mean drop diameter of the rain zone.  

Reducing the rain zone Sauter mean drop diameter from 6 mm to 2.5 mm 

increases the rain zone transfer coefficient of a typical NDWCT cross-counterflow 
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rain zone by a factor of 4.5 and the loss coefficient by a factor of 1.5. Based on 

the NDWCT performance model example given in Kröger (2010), this can reduce 

the cooling water outlet temperature by as much as 1.2 
o
C.  

 Scope of work 1.5

In order to meet the objectives of this thesis the methodology listed below is 

followed: 

 A new splash type grid is designed and manufactured for testing. 

 A test facility is prepared for testing of the new splash type grid and 

conventional fill. 

 A software interface program is developed in visual basic to log and 

process data during tests. 

 Various tests are conducted to investigate the effect of installing the grid 

below a conventional film pack on rain zone performance characteristics 

(Merkel number and loss coefficient) based on the Merkel method of 

analysis 

 Computational models are developed for inferring the rain zone drop size 

from the experimentally determined transfer coefficients 

 A theoretical one-dimensional cooling tower model is programmed for a 

full size cooling tower to investigate the effect of different drop sizes in 

the rain zone on cooling tower performance 

 Thesis summary 1.6

Below is an overview of the chapters in this thesis. 

CHAPTER 1 – INTRODUCTION 

The introduction section introduces the reader to a NDWCT, how it operates, the 

affect the performance has on a power plant‟s performance, NDWCT 

performance issues, typical problems faced by the Eskom power utility and 

general solutions to these problems and methods for enhancing the performance 

of a NDWCT. This section also provides the reader with the objectives, 

motivation and research methodology to achieve the objectives. Lastly the 

introduction section provides a thesis summary of all the chapters. 

CHAPTER 2– COUNTERFLOW WET COOLING TOWER FILL TEST 

FACILITY 

This chapter provides an overview of the wet cooling tower test facility (both 

counter-and cross flow) located at the University of Stellenbosch. This chapter 

also gives the aim of the experimental work, the previous work that was done and 

published using the test facility, description and operation of the test facility, 

providing more detail on the counterflow test section, which also includes a 

description of test grid used as the performance enhancing device during testing. 

A description of the measurement techniques and instrumentation is also given. 
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The experimental procedure used, which include heating of process water, test 

facility preparation, testing and data logging is given in this section as well.  

CHAPTER 3– EVALUATION OF THE EFFECT OF A GRID ON THE 

PERFORMANCE CHARACTERISTICS OF A NDWCT 

RAIN ZONE 

The experimental results for the effect of different fill/grid configurations on the 

overall transfer- and loss coefficient, more specifically the transfer- and loss 

coefficient for the rain zone below these configurations are given in this chapter. 

The performance characteristics of the rain zone below these configurations are 

compared with a reference case, where the reference case is the performance 

characteristics of the rain zone below a conventional type film fill. Other content 

of this chapter also include the procedure used for determining the rain zone 

performance characteristics below the fill configurations, a description of the 

specific fill configurations tested, the necessity for the configurations tested and 

finally the results are presented.  

CHAPTER 4 – RAIN ZONE SAUTER MEAN DROP DIAMETER 

The effect of the grid on the rain zone drop size is given in this chapter. The 

method used for determining the drop size based on the experimental transfer 

coefficient is also given. 

CHAPTER 5 – THE EFFECT OF DIFFERENT FILL CONFIGURATIONS 

ON THE PERFORMANCE OF A NDWCT 

This chapter contains the NDWCT model used, the design data of the cooling 

tower being modelled and the type of fill currently installed in the tower. A 

comparison of the original design performance and the performance as calculated 

using the one dimensional model is given. The current performance of the cooling 

tower is incorporated in the one dimensional model. Lastly different fill and 

fill/grid configurations are modelled and the best performing configuration 

recommended.  

CHAPTER 6 – CONCLUSION 

The conclusion based on the work presented in this thesis is given.  
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CHAPTER 2 COUNTERFLOW WET COOLING TOWER FILL TEST 

FACILITY 

 Introduction 2.1

This section of the thesis provides an overview of the wet cooling tower fill 

performance test facility, as shown in Figure 2-1, located at the University of 

Stellenbosch. 

The aim of the experimental work is to determine the performance characteristics 

of a conventional film fill as well as a conventional film fill with a grid placed 

below it. The results obtained are ultimately used in a one dimensional NDWCT 

model to model the effect of the conventional film fill and grid configuration on 

the cooling tower performance.  

Several experiments have been done, of which the results were also published 

(Oosthuizen, 1995; Kloppers and Kröger, 2003; Bertrand, 2011; Grobbelaar, 

2012), on the test facility to determine performance characteristics of fill and 

different fill configurations. Oosthuizen (1995) used the counteflow test facility to 

measure the performance characteristics and drop size distribution below a trickle 

fill. He then introduced a splash grid below the trickle fill and determined the 

effect of this splash grid on the performance characteristics and drop size 

distribution of the rain zone. Kloppers and Kröger (2003) tested film-, trickle-, 

and splash fill to generate experimental data which was used for determining the 

best fit correlation for describing the loss coefficient. Grobbelaar (2012) used the 

cross flow test section to determine a trickle fill‟s performance characteristics and 

compares it with the same trickle fill performance characteristics, however tested 

in the counterflow test facility. The experimental results were also used for 

validating a two dimensional model. Bertrand (2011) investigated several non-

ideal factors associated with the counterflow test facility. This includes: air flow 

uniformity, air fill bypass, location of water inlet and outlet temperature 

measurement points and location of pressure measurement probes. He also 

quantified the water distribution obtained with a newly designed water 

distribution system. He then tested a film-, trickle- and splash fill to determine 

whether these fills can be tested accurately in this test facility. He found that film- 

and trickle fill can accurately be tested in the counterflow test facility and to a 

lesser degree of accuracy for splash fills where the wall effect i.e. where the water 

migrates to the wall of the test facility bypassing the fill, start to dominate.  

 Description of test facility 2.2

A description of the cooling tower fill test facility measurement, techniques and 

instrumentation are given in this section. It comprises of the water flow, air flow, 

process water heating and description of the equipment and instrumentation. 

The process water is drawn from the top of a 45 000 litre reservoir to the test 

facility. The process water is heated by a 150 kW diesel fired boiler. The water is 
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drawn from the bottom of the reservoir and fed to the boiler where it is heated 

approximately 1.5 
o
C every hour before it returns to the top of the reservoir to 

avoid warm water to be drawn and fed to the boiler. This cycle continues until the 

process water is heated to 3 
o
C above the desired temperature to negate the effect 

of heat losses to the environment during start-up of the test facility.  

 

 

 

Figure 2-1: Schematic drawing of experimental test facility 

The process water is pumped from the reservoir to the counter flow test section 

where it is distributed evenly onto the fill material by means of a water 

distribution system (14, Fig. 2-1 and Fig. 2-2).  

The temperature of the water is measured by T/C‟s (15, Fig 2-1) upstream of the 

water distribution system in the common inlet pipe line. The water flows through 

the packing and exits to the rain zone as drops with a poly-dispersed drop 

distribution after which it is caught by the water collecting troughs (11, Fig. 2-1). 

The water drains from the water collecting troughs to the side manifolds and 

outlet pipes. Three T/C‟s in each outlet pipe measure the outlet temperature (10, 

Fig. 2-1). The two outlet pipes join to form a common line which drains to a 

collecting sump at ground level. From the collecting sump it is pumped back to 

the bottom of the hot water reservoir thereby ensuring the warmest water remains 

at the top.  

The air used in the test facility is drawn through a rounded inlet (1, Fig. 2-1) into a 

square duct with a cross-sectional area of 4 m
2
, as shown in Figure 2-1 where the 

flow is induced by the centrifugal fan (8, Fig. 2-1). It flows through the cross flow 

test section (2, Fig. 2-1) which is not in use during counterflow tests. There is a 

pair of mixers in the test facility with each pair containing a horizontal and 

vertical mixer. This is to ensure good mixing and uniform temperature distribution 

during cross flow fill tests. The horizontal and vertical mixing vanes are similar in 

1. Round Inlet 

2. Cross flow test section 

3. Mixing vanes 

4. Settling screens 

5. Nozzle dry and wet bulb 

T/C 

6. Differential pressure point 

across nozzle 

7. Air flow nozzles 

8. Centrifugal fan 

9. Counter flow dry-and wet  

bulb T/C 

10. Water outlet T/C 

11. Water catchment system 

12. Differential pressure point  

across fill 

13. Counterflow test section 

14. Water distribution system 

15. Water inlet T/C 
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design, differing only in orientation, where the horizontal vanes are at a 90
o
 angle 

to the vertical mixing vanes. 

The mixing, however induces large eddies and vortices, which are broken up by 

the settling screens (4, Fig. 2-1). From the settling screens the air moves through 

the flow nozzles (7, Fig. 2-1) with the pressure drop measured across them (6, Fig. 

2-1) and wet- and dry bulb temperature upstream of them (5, Fig. 2-1) used for the 

calculation of the air mass flow rate. The air moves via the 50 kW variable speed 

drive fan through three 90
o
 bends fitted with guiding vanes to minimize losses. 

Before the air enters the last 90
o
 bend it flows through air resistance packing of 

varying thickness to create a uniform air flow distribution to the counterflow test 

section. From there it enters the vertical/counterflow test section as an 

approximately vertical stream. The dry- and wet bulb temperatures are measured 

(9, Fig. 2-1) before the air flows through the water collecting troughs (11,         

Fig. 2-1) fill, spray, water distribution system and drift eliminator zones before 

exiting to the atmosphere. 

 Description of the counterflow test section 2.3

The primary outcome of this thesis is to determine performance characteristics of 

fill grid combinations. The counterflow test section shown in Figure 2-2 is utilized 

to determine these characteristics. The various sections of the counterflow test 

facility are discussed below.  

 
a). Test facility 

 
 

b). Schematic drawing 

 
Figure 2-2: Counterflow wet cooling fill test section 
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2.3.1 Water distribution system 

The water distribution system (marked 14 in Figure 2-2) shown in Figure 2-3, 

distributes the water approximately uniformly across the fill. It consists of a 

common inlet pipe, distribution header, down pipes and a double pipe distribution 

system. Figure 2-3c shows the water flow through one of the inner- and outer pipe 

configuration that branch off from the common manifold. There are 57 

distribution pipes arranged in a staggered pattern and spaced 50 mm apart and    

50 mm pitch. The distribution pipes (shown in Fig. 2.3c) consists of an inner pipe 

with 2 mm holes at the top to prevent air pockets from forming and an outer pipe 

with 1 mm holes. The 1 mm holes are arranged in a staggered pattern at a pitch of 

10 mm. The bottom row (can be seen in Fig. 2.3b) are set at an angle of 30
o
 while 

the top row at an angle of 20
o
. The angle allows the drops exiting the water 

distribution system to have a horizontal component preventing it from falling 

through the fill. There are several of these pipes and are arranged in a staggered 

pattern as can be seen in Figure 2-3b. 

 
 

a).  Isometric view 

 
 

b). Front view 

 
c). Water flow 

 
d). Water distribution system 

Figure 2-3: Water distribution system 

One of the Merkel theory assumptions is a uniform water distribution across the 

fill. A non-uniform water distribution across the fill will lead to the under-

prediction of the transfer coefficient. Bertrand (2009) measured the water 

distribution below the spray frame at water mass velocities of                        

1.496, 2.997 and 4.485 kg/s m
2
. He quantified the water distribution achieved by 

the spray frame using the Christiansen coefficient which is defined as: 
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           2-1 

 

A Christiansen coefficient of 1 corresponds to a uniform distribution i.e. highest 

transfer coefficient achievable for the given conditions. Bertrand found a 

Christiansen coefficient of 0.95, 0.96 and 0.94 for 1.49-, 2.99- and 4.49 kg/s m
2
 

respectively. This means that the transfer coefficient deviates from the ideal case 

most at a water mass velocity of 4.485 kg/s m
2
. Kranc (1993) correlated the 

percentage deviation of the transfer coefficient from the ideal case with the 

Christiansen coefficient. For the water mass velocity of 4.485 kg/s m
2
 case the 

deviation is approximately 99.56 %. This means that the water is distributed close 

to ideal.  

2.3.2 Fill region 

The purpose of the fill region is to house the fill to be tested (17, Fig. 2-2). The 

overall height of the test facility which include fill, spray and rain zone height can 

be extended to 5 m.  The test facility can be used with reasonable accuracy to test 

film, trickle and to a lesser degree of accuracy splash packs Bertrand (2011). The 

water migration effect is the water that runs along the wall bypassing the fill 

region. The water will thus partially bypass the fill region under predicting the 

fill‟s performance. Tim Bertrand (2011) tested various fills and fill heights found 

that the maximum deviation for film fill (the conventional fill used for 

experiments in this thesis) to be 15% of the average water flow rate. The lowest 

Christiansen coefficient was found to be 0.903 for a film fill height of 1.83 m and 

water mass velocity of 2.98 kg/s m
2
. This Christiansen coefficient predicts a 99 % 

under prediction of the ideal performance.  

2.3.3 Water collecting troughs 

The water collecting troughs (Figure 2-4) collect the water falling from the fill 

region and drain it to the outlet piping to a collecting sump from where the water 

is pumped back to the hot water reservoir. The system consists of two levels of 

troughs directly below one another orientated at 90
o
 to minimize water losses and 

allow air to pass through it. A deflector plate, shown in Figure 2-4b, was added to 

further reduce water losses passing through.  
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a Water collecting troughs 
 

b Trough with deflector plate 

 
Figure 2-4: Two layer water collecting troughs 

2.3.4 Description of grid 

A description of the grid used for the experimental work is shown in this section.  

A splash type grid of which a photograph is shown in Figure 2-5 was built for 

placing below a conventional film fill to reduce the Sauter mean rain zone drop 

diameter. The design was based on the research conducted by Steenmans (2010). 

The main criteria for designing the grid were to reduce the drop size below the fill 

to 2 mm with a minimal pressure drop. Steenmans tested various parameters to 

determine the optimum grid placement. The grid below was designed such that 

the drop is cut and not disintegrating when impacting the wire. This means the 

wire size must be smaller but comparable to the drop size resulting in a 1 mm wire 

size. Two rows of wires are placed 2 mm apart in a staggered pattern as shown in 

Figure 2-5a to reduce the size of the drop to 2 mm. The wires were placed at an 

angle of 20
o
 since Steenmans found the smaller drops as a result of the cutting of 

the drop deflects by 20
o
 after impact. This would ensure that even if the drop size 

after impact is larger than 2 mm can still reduce its size.  

 
a. Grid wire configuration 

 
 

b. Photograph of grid 

Figure 2-5: Grid design 
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 Measurement techniques and instrumentation 2.4

The instrumentation used for measuring the temperature, pressure and water flow 

rate is covered in this section.  

2.4.1 Temperature 

There are eight aspirated psychrometers (5, Fig. 2-1) and (9, Fig. 2-1), each 

containing two T-type T/C‟s, one for the wetbulb temperature and the other for 

the drybulb temperature (schematic drawing figure 2.6).There are three water inlet 

and six water outlet T-type T/C‟s fitted on the test facility (10, Fig. 2-1 and 15 

Fig. 2-1 respectively) measuring the inlet and outlet water temperature 

respectively. 

Four of the eight aspirated psychrometers measure the temperatures before the 

flow nozzles for air mass flow rate calculations. The remaining four measure the 

temperatures for performance characteristics calculations of the counterflow test 

section. The wet bulb temperature is a crucial component for determining 

performance characteristics. It is therefore measured according to ANSI 

ANSI/ASHRAE 41.1 – 1986, Standard method for temperature measurement 

standard which states:  

For dry/wet bulb temperature measurements the T/C‟s must be shielded from 

radiant heat by fitting it with a metal sleeve. A continuous constant air velocity of 

between 4.8 m/s and 5.3 m/s must flow across the T/C‟s to ensure the air 

surrounding it does not become saturated with water vapour. The T/C‟s measuring 

the wetbulb temperature must be fitted with a wick covering at least 25.4 mm of 

the temperature sensitive part of the thermocouple. Distilled or demineralized 

water must be fed to the wick from a reservoir. The temperature of the reservoir 

must be at the wetbulb temperature which is practically achievable by allowing 

sufficient ventilation across the wick. The wick must also be kept clean from any 

contaminants that may influence its wettability or the water‟s partial pressure.  

 

Figure 2-6: Schematic drawing of an aspirated psychrometer 

The calibration details of the T/C‟s can be found in appendix A. 

2.4.2 Pressure 

There are three Endress and Hauser Deltbar S PMD75 pressure transducers 

(Figure 2-7) two measuring the pressure drop across the fill and one across the 

flow nozzles. The two pressure transducers measuring the pressure drop across the 
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fill are connected to a total of eight H-taps. Clear tubing is used to connect the H-

taps to the pressure transducers making it possible to observe any water or 

condensation that may occur in the line. The range and calibration for each 

pressure transducer can be found in appendix A.  

 
a. Pressure transducers 

 
b. H-tap 

Figure 2-7: Pressure transducers and H-tap 

2.4.3 Air mass flow rate 

The pressure drop across five ASHRAE 51-75 elliptical nozzles (Figure 2-8) is 

measured to calculate the air mass flow rate (calculation details can be found in 

appendix B). These nozzles can be closed to achieve the required Reynolds 

number for a given flow rate.   

a) Picture of nozzles 

 
 

b) Schematic drawing of nozzles 

 

Figure 2-8: Elliptical nozzles 

2.4.4 Water flow rate 

An Endress and Hauser Promag 10W electromagnetic flow meter (Figure 2-9) is 

used to measure the flow rate of water to the counter flow test section. The flow 

meter is installed between the water reservoir and the test section and is installed 

vertically to avoid air to become trapped and lead to erroneous results.   
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Figure 2-9: Electromagnetic flow meter 

 Experimental procedure 2.5

This section provides the procedure used for conducting the experiments. Three 

procedures are covered for the different stages of a specific test. These procedures 

include the heating of the process water, test facility preparation and the 

performance test.  The procedure for each of these stages is given below. 

2.5.1 Heating of process water 

This section provides the procedure for the heating of the process water to the 

required temperature for testing.  

Before opening any valves the water level in the tank must be sufficient to avoid 

the cavitation of the pumps. Sufficient water level is also required to ensure that 

the amount of water loss during the tests, through leaks and evaporation have a 

negligible effect on the water flow rate to the test facility.  

There are two pumps located in the system as seen in Figure 2-10. One of the 

pumps is used for circulating process water through the boiler and the other to 

supply process water to the counterflow test facility. Both pumps can however be 

used to deliver the process water to the test facility if a higher flow rate is 

required. The pump can therefore run in series or parallel.  

The inlet valve to pump A is configured to be fully opened, while the outlet valve 

is slightly open for start-up of the pumps. Pump A is switched on and the outlet 

valve is slowly opened until fully opened. Water is now fed to the boiler. There is 

a pressure gauge on the water supply line to the boiler to ensure there is water 

flowing to the boiler.  

With the water supply to the boiler opened the diesel tank level can be checked to 

ensure there is enough diesel to heat the water to the required temperature. Once 

checked and filled to the required level the diesel supply valve can be opened. The 

boiler may be started when the diesel supply line is open. A diesel pump to the 

boiler ensures that the diesel enters the boiler at the correct pressure for ignition. 

Before the diesel is fed to the boiler, the boiler is automatically purged to rid it of 

any volatiles that might ignite. After the system is purged the diesel is ignited and 

the water heated. The rate at which the water is heated is approximately 1.5 
o
C per 
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hour. The water should be heated to approximately 3 
o
C above the desired 

temperature to negate heat losses to the environment during start-up of the counter 

flow test facility 

The shutdown of the boiler takes place in reverse order. This means the boiler is 

switched off first, followed by the diesel supply and finally the water supply. The 

water supply should be turned off 15 minutes after the boiler has been switched 

off to cool down the boiler.  

 

Figure 2-10: Process water heating flow diagram 

2.5.2 Test facility preparation  

Preparation starts with heating the process water to the desired temperature at a 

heating rate of approximately 1.5 
o
C per hour. It may take several hours before the 

desired temperature is achieved. The installation of the fill is done while the water 

is being heated. In addition blocked holes on the spray frame must be unblocked, 

the pressure lines connecting the H-taps and pressure transducers cleared to 

ensure a clear path for the air, the water inlet filter must be cleaned and all T/C‟s 

calibrated. The calibration details can be found in appendix A.  

2.5.3 Performance Testing 

Tests are conducted during the early morning hours approximately three hours 

before sunrise. The atmospheric conditions are most stable at this time of the day. 

It takes approximately 2h30 to complete one test when conducting the extensive 

test matrix. The extensive test matrix includes water mass velocities ranging from 

1.5 to 4.5 kg/s m
2
 in increments of 1.5 kg/s m

2
. The air mass velocities are           

1, 2, 3 and 3.5 kg/s m
2
. It takes approximately 2 minutes for the system to 

stabilize after a test condition has been changed. Stabilization in this case refers to 

a constant: pressure drop across the fill, mass flow rate, wet- and dry bulb 

temperatures and outlet water temperature. In addition the pressure drop as 

measured by the pressure transducers must not deviate more than 2 N/m
2
 from the 

average pressure drop across the fill.  
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The dry- and wet bulb temperature are measured with only the psychrometric fans 

running. The dry- and wet bulb temperatures are checked and recorded. As soon 

as the temperatures are within 0.2 
o
C from the average dry- and wet bulb 

temperature the performance test can commence.  

The atmospheric pressure is measured before each test using a mercury barometer. 

The test starts by adjusting the water flow to the required flow rate. This is 

followed by adjusting the air flow rate accordingly. Four air flow rates are 

evaluated at a specified water flow rate. Once the system has stabilized at the 

specified flow rates, readings are taken for 1 minute. This is repeated until the test 

matrix is completed.  

The shutdown of the test facility includes switching off the water supply pump 

and after the level in the collecting sump has dropped to an acceptable level the 

recirculation pump is switched off. Both the main fan and the psychrometric fans 

are switched off. 

2.5.4 Data logging 

An Agilent 34972 A unit connected to a laptop via a USB cable was used for data 

logging and recording of measured parameters. An Excel macro given in the 

Agilent 34972 A user guide was adapted to create the user interface, output 

measured and processed data. The output included the measured data on the test 

facility and processed data. Computer programs were written in Excel to calculate 

the calibrated values from the measured data, the air mass flow rate, the        

water- and air mass velocities, transfer- and loss coefficient using the Merkel 

method. The output for these parameters is given in Excel tabular and graphical 

form as can be seen in Figure 2-11, Figure 2-12 and Figure 2-13. It should be 

mentioned that the same hardware setup was used for calibration of T/C‟s and 

pressure transducers. 
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Figure 2-11: Excel graphical output for the experimentally measured pressure drop across 

the fill and nozzles, wet- and dry bulb temperatures at the air flow measuring 

nozzles  

 

Figure 2-12: Excel graphical output for the experimentally measured inlet- and outlet water 

temperatures and air- and water mass flow rate 
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Figure 2-13: Typical measured, calibrated and processed data output including Merkel 

number and loss coefficient 

In the graphical output window (shown in Figure 2-11 and Figure 2-12) the 

temperature of the inlet- and outlet water and wet- and dry bulb temperatures have 

to be within 0.2 
o
C from the average temperature thereby indicating the system is 

stable. In addition the pressure drop across the fill should be within 2 N/m
2 

from 

the average pressure drop. The minimum and maximum are shown on these 

graphs. The thermocouple and pressure transducer measurements should be within 

these boundaries before data is logged. 
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CHAPTER 3 EVALUATION OF THE EFFECT OF A GRID ON THE 

PERFORMANCE OF THE RAIN ZONE 

The aim of this section is to evaluate the effect of introducing a grid below a 

conventional cross fluted film fill, to reduce the size of the drops leaving the fill as 

well as the effect of different fill/grid configurations on the performance 

characteristics of the rain zone.  

The transfer- and loss coefficient values, determined experimentally using the 

Merkel method (appendix C) for several fill/grid configurations, are presented in 

this section. The effect of introducing a grid below conventional film fill on the 

rain zone performance characteristics is also presented here. Factors regarding the 

configuration of the grid below the fill including the distance between the grid and 

fill, the introduction of a second grid, rain zone height and the angle of the grid 

with the horizontal plane and its effect on the rain zone performance 

characteristics are also presented. The transfer- and loss coefficient of the rain 

zone below a conventional film fill is used as the reference case for comparing the 

rain zone‟s performance below other fill configurations.  

This section comprise of a procedure for isolating the rain zone performance 

characteristics from the overall performance characteristics, the fill configurations 

tested as well as the experimental results. 

 Procedure for determining the rain zone performance characteristics 3.1

The process of determining the rain zone performance characteristics is described 

in the following section. 

In each test conducted, the overall transfer coefficient also known as the Merkel 

number and loss coefficient are determined, which include the contribution of the 

spray-, fill-, rain- and water catchment zones. It becomes apparent that in order to 

isolate the performance characteristics of the rain zone from the overall 

performance characteristics, the performance characteristics of the spray-, fill-and 

water catchment zones (configuration 1 in Table 3-1) have to be determined as 

shown in Figure 3-1 and equation 3-1. This is subtracted from the overall 

performance characteristics of the other tests to isolate the specific test‟s rain 

zone‟s performance characteristics. 

To be able to subtract the performance of the spray- fill- and water catchment 

zones (configuration 1) from the other tests, it is necessary that these tests be 

conducted in the exact same process conditions the aforementioned test was 

conducted in. It is difficult to recreate the exact same conditions of 

configuration1, however it is possible to create a power curve which is used to 

correlate the transfer- and loss coefficient of the 300 mm spray zone, 608 mm fill, 

280 mm rain zone and troughs (configuration 1 in Table 3-1).  
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Several tests are performed to determine the effect of various fill configurations. 

These configurations summarised in Figure 3-2 and Table 3-1 include fill with: no 

rain zone, rain zone, grid and rain zone, two grids and rain zone, extended rain 

zone, grid and extended rain zone, two grids and extended rain zone and grid at an 

angle and extended rain zone.  

 

Figure 3-1: Illustration for the isolation of the rain zone Merkel number 

                    3-1 
where                     

 

Figure 3-2: Notated vertical tower test section 

Table 3-1 provides the configuration name and specification for the various tests 

conducted.  
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Table 3-1: Specification for the various test configurations 

Configuration Test 

description 

Dimensions Number of 

grids used 

  Hsp 

[mm] 

Hfi 

[mm] 

Hfg 

[mm] 

Hgg 

[mm] 

Hrz 

[mm] 

 

1 Fill 300 608 N/A N/A 280 0 

2 Fill rain zone 300 608 N/A N/A 2105 0 

3 Grid 200 300 608 200 N/A 1905 1 

4 Grid 300 300 608 300 N/A 1905 1 

5 Grid 400 300 608 400 N/A 2105 1 

6 Additional 

grid 400 

300 608 400 400 1905 2 

7 Additional 

grid 800 

300 608 400 800 1905 2 

8 Fill extended 

rain zone 

300 608 N/A N/A 4168 0 

9 Grid 400 

extended rain 

zone 

300 608 400 N/A 4168 1 

10 Additional 

grid 800 

extended rain 

zone 

300 608 400 800 4168 2 

11 Diagonal grid 

extended rain 

zone 

300 608 400-

450 

N/A 4168 1 

 

These tests are necessary to determine the effect of various fill/grid configurations 

on the rain zone performance characteristics.  

 Performance characteristics of a cross fluted film fill 3.2

The experimental results for the fill (configuration 1 in Table 3-1) are presented in 

this section and the data can be found in appendix E. The configuration of the 

setup and notations are shown in Figure 3-2. 

The purpose of this test is to determine the performance characteristics of this film 

fill. A power curve is fitted through the data for both the transfer- and loss 

coefficient. This power curve is later used to deduct the contribution of the film 

fill from the overall performance characteristics leaving only the rain zone 

performance characteristics as described in section 3.1. These rain zones are used 

for comparative studies.  

The experimental results and power curve fit for the transfer- and loss coefficient 

of configuration 1 are shown in Figure 3-3 and Figure 3-4 respectively. The 

correlation plotted in Figure 3-3 is given by equation 3-2 and the correlation for 

the data shown in Figure 3-4 by equation 3-3. 
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It is imperative that the power curve fits the data well across a wide temperature, 

water and air flow rate range. The deviation, δ   
 e,  exp- e, calc

 e,exp 
 and 

δ fdm,  
 fdm,Exp- fdm  Calc

 fdm, Exp
 , are presented in Figure 3-5 and Figure 3-6 respectively. 

 
a) Twi = 46 oC – 39 oC 

 
b) Twi  = 38 oC– 36 oC 

 
c) Twi = 36 oC – 28 oC 

 
 

 

 
 

 
Figure 3-3: Transfer coefficient and correlation for configuration 1 

     2.4899   
 0.1325  

0.6630  
 0.8582  2 0.974 3-2 

 fdm 16.579Ga
 0.259Gw

0.160  2 0.949 3-3 

The maximum deviation for the transfer coefficient correlation given by equation 

3-2 was found to be 3 %. The maximum deviation for the loss coefficient 

correlation given by equation 3-3 was found to be 8 %.  
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–––– (Eq. 3.2) 
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a) Twi = 46 oC – 39 oC 

 
b) Twi  = 38 oC – 36 oC 

 
c) Twi = 36 oC – 28 oC 

 

 
 

 

 
Figure 3-4: Loss coefficient and correlation for configuration 1 

 
a) Twi = 46 oC – 39 oC 

 
b) Twi = 38 oC – 36 oC 

 

 
c) Twi = 36 oC – 28 oC 

 

 
 

 

 

 
Figure 3-5: Transfer coefficient deviation plot for configuration 1 
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 Performance characteristics of a rain zone below configuration 2 3.3

The performance of a rain zone below a chemically bonded cross fluted film fill is 

characterised by determining the total performance characteristics and subtracting 

the characteristics of the film fill (configuration 1) presented in section 3.2. The 

process of isolating the rain zone performance characteristics are described in 

section 3.1. 

Test configuration 2 as shown in Table 3-1 will serve as basis for comparing the 

performance of other configurations since this is how a typical natural draught wet 

cooling tower is configured i.e. conventional fill with a rain zone below it. A 

correlation is used for this purpose. Only the isolated performance of the rain zone 

will be compared to the other configurations.  

The experimental results for the transfer-and loss coefficient of configuration 2 

are shown in Figure 3-7 and Figure 3-8 respectively. The correlations fitted 

through the data shown in Figure 3-7 and Figure 3-8 are given by equation 3-4 

and 3-5 respectively. 

 
a) Twi = 46 oC – 39 oC 

 
b) Twi = 38 oC – 36 oC 

 

 
c) Me Twi = 36 oC – 28 oC 

 

 

 

 
 

 

 
Figure 3-6: Loss coefficient deviation plot for configuration 1  
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a) Twi  = 49 OC – 40 OC 

 
b) Twi = 39 oC – 34 oC 

 
c) Twi = 33 oC – 29 oC 

 

 
 

 

 
 

 

 
Figure 3-7: Transfer coefficient and correlation for configuration 2 

        2.308    
 0.1012  

0.6684  
 0.8480  2 0.9981 3-4 

The deviation plot of the experimental data in Figure 3-7 and correlation 

presented by equation 3-4 for the transfer coefficient of configuration 2 are shown 

in Figure 3-9. Similarly the deviation plot for the loss coefficient of configuration 

2 i.e. experimental data from Figure 3-8 and correlation as given in equation 3-5 

are shown in Figure 3-10. 
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a) TWI  = 49 oC– 40 oC  

b) Twi = 39 oC – 34 oC 

 
c) Twi = 33 oC – 29 oC 

 

 
 

 

 

 
Figure 3-8: Loss coefficient and correlation for configuration 2 

 

 
a) TWI  = 49 oC – 40 oC 

 
b) Twi = 39 oC – 34 oC 

 
c) Twi = 33 oC – 29 oC 

 
 

 
 

 

 
Figure 3-9: Transfer coefficient deviation plot for configuration 2 
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a) TWI  = 49 oC  – 40 oC 

 
b) Twi = 39 oC – 34 oC 

 
c) Twi = 33 oC – 29 oC 

 

 

 
 

 

 
Figure 3-10: Loss coefficient deviation plot for configuration 2 

The maximum deviation for the transfer- and loss coefficient was found to be 8 % 

and 11 % respectively. 

 The effect of installing a grid below a conventional film fill on the rain 3.4

zone performance characteristics 

The effect of placing a grid (refer to 2.3.4 for a description of the grid) underneath 

the fill (configuration 5 in Table 3-1) is investigated in this section.    

The experimental results for the transfer- and loss coefficient of configuration 5 

are shown in Figure 3-11 and Figure 3-12 respectively.  

The rain zone transfer coefficient below the grid per meter rain zone below the 

grid as well as the correlation as given by equation 3-6 which was fitted through 

the data in Figure 3-13 is shown in Figure 3-13. 
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a) Twi = 50 oC – 43 oC 

 
b) Twi = 43 oC – 37 oC 

c) Twi  = 36 oC – 32 oC 

 

 
 

 

 

 
Figure 3-11: Transfer coefficient for configuration 5 

 

 
a) Twi = 50 oC – 43 oC 

 
b) Twi = 43 oC – 37 oC 

 
c) Twi  = 36 oC – 32 oC 

 

 

 
 

 

 
Figure 3-12: Loss coefficient for configuration 5 
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a) Twi = 50 oC – 43 oC 

 
b) Twi = 43 oC – 37 oC 

 
c) Twi  = 36 oC – 32 oC 

 
 

 

 
 

 

 

 
Figure 3-13: Rain zone transfer coefficient per meter rain zone for configuration 5 

      

   
         

        
          

         3-6 

The transfer coefficient ratio for configuration 5 and configuration 2 rain zone is 

shown in Figure 3-14. This ratio was calculated using the equation shown in 

equation 3-7.. 

        

       
 
         

       
 3-7 

From Figure 3-14 it can be seen that the introduction of the grid increased the rain 

zone performance by a factor of approximately 4.5. A similar process was 

followed to determine the effect of the grid on the rain zone loss coefficient as can 

be seen in Figure 3-15. The loss coefficient increased by a factor of approximately 

1.5 with the introduction of the grid below the fill. 

There is thus a significant increase in the transfer coefficient with a minor 

increase in the loss coefficient.  
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a) Twi = 50 oC – 43 oC 

 
b) Twi = 43 oC – 37 oC 

 
c) Twi  = 36 oC – 32 oC 

 

 
 

 

 

 
Figure 3-14: Ratio of rain zone transfer coefficient for configuration 5 and 2  

 
a) Twi = 50 oC – 43 oC 

 
b) Twi = 43 oC – 37 oC 

 
c) Twi  = 36 oC – 32 oC 

 

 
 

 

 

 
Figure 3-15: Ratio of rain zone loss coefficient for configuration 5 and 2  
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 The effect of drop falling height before impact on the rain zone 3.5

performance characteristics 

The effect of the placement of the grid at 200 (configuration 3)- and 300 mm 

(configuration 4) below the fill is considered in this section. A reduced test matrix 

is used for experiments. This reduced test matrix is sufficient to determine the 

effect of air (Ga)- and water (Gw) mass velocities as well as water inlet 

temperature (Twi) on the performance characteristics, however is insufficient test 

data to generated a correlation as was the case in the previous sections. 

Correlations are however not necessary for this and the sections that follows.  

The heights were chosen based on the results as found by Steenmans (2010) with 

the results given in the figure below. 

 

Figure 3-16: Drop falling height before impact (Steenmans, 2010) 

Steenmans found the smallest drop diameter for a drop falling height before 

impact of 400 mm. The other heights tested include 200-and 300 mm. The rest of 

the heights in Figure 3-16 were not considered due to the restriction in height of 

the counter flow test facility.   

The transfer coefficient ratio, which is calculated using the following expression, 
         

      
 

          

       
, for configuration 3 and 4 as well as the test conditions are 

given in Figure 3-17, Figure 3-18, Table 3-2 and Table 3-3 respectively. The loss 

coefficient ratio calculated using the following expression, 
            

         
 

                

             
for configuration 3 and 4 is given in Figure 3-19. The transfer-and 

loss coefficient for the rain zone below the grid was calculated using correlation 

shown in equation 3-6. It should be mentioned that the results of test 7 and 8 were 

omitted from the calculation for determining the average loss coefficient ratio. 

The difference between the fill (configuration 1) and fill/rain zone (configuration 

2) total loss coefficient is negligible leading to a small rain zone loss coefficient. 

This small rain zone loss coefficient increases the rain zone loss coefficient ratio 

to above 8 for tests 7 and 8 in most cases much higher than the rest of the tests. 

This suggests the loss coefficient for the unaltered rain zone, which is present in 
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the denominator, might be negligible at this water- and air mass velocities as per 

test 7 and 8. It is expected that the loss coefficient increases with increasing water 

mass velocity and decreasing air mass velocity. The rain zone loss coefficient is 

expected to be more dependent on the air mass velocity since the drop size, which 

causes the losses in the rain zone, does not differ much with water mass velocity. 

If this is the case then the smallest loss coefficient should be for test 8 conditions. 

This was found to be the case with a configuration 2 rain zone loss coefficient of 

Kfdm, 2, rz = -0.061 compared to the loss coefficient for test 7 Kfdm, 2, rz = 0.297. For 

all the test conditions these two were found to be the smallest.  

The average transfer coefficient ratio for the tests was found to be 3.63 and 4.45 

for configuration 3 and 4 respectively, while for the loss coefficient it was found 

to be 1.460 and 1.494 respectively.  

 
Figure 3-17: Ratio of rain zone transfer 

coefficient for configuration 3 and 2  

Table 3-2: Test parameters for 

configuration 3 

 
Test Twi [

oC] Ga [kg/s m2] Gw [kg/s m2] 

1 39.94 2.01 1.49 

2 39.81 2.00 3.09 

3 38.37 1.99 4.44 

4 38.37 1.99 3.07 

5 37.96 1.03 3.07 

6 37.56 2.05 3.06 

7 37.23 2.96 3.06 

8 36.86 3.41 3.07 

9 36.26 2.02 3.04 
 

 
Figure 3-18: Ratio of rain zone transfer 

coefficient for configuration 4 and 2  

 

Table 3-3: Test parameters for 

configuration 4 

 
Test Twi [

oC] Ga [kg/s m2] Gw [kg/s m2] 

1 31.22 1.96 1.57 

2 30.84 1.95 3.11 

3 30.44 1.93 4.40 

4 29.27 2.00 2.86 

5 29.19 1.06 2.87 

6 29.01 2.03 2.87 

7 28.89 3.02 2.87 

8 28.73 3.40 2.86 

9 28.39 2.00 2.84 
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a) Configuration 3 

 
b) Configuration 4 

Figure 3-19: Ratio of rain zone transfer coeffcient for configuration 3 / 4 and 2 

It can be seen from Fig. 3-17 that a slightly negative transfer coefficient was 

obtained for test one of configuration 3. The same was found for test one 

configuration 8. In both cases the transfer coefficient for configuration 1 was 

found to be greater than the transfer coefficient for configuration 3 and 8 at test 1 

test conditions (Ga, Gw) (refer to table 3-2 and 3-6 respectively). This is however 

highly unlikely that this could actually be the case since both of these 

configurations have a rain zone beneath, while configuration 1 does not. 

Configuration 3 also has a rain zone modification making it even more unlikely 

that configuration 1 has a greater transfer coefficient. In addition if this was truly 

the case (Me1 > Me3/8) it would be more pronounced for configuration 2‟s rain 

zone transfer coefficient. This is however not the case as is evident from figure 3-

13.  

It is interesting to note that in both cases the negative transfer coefficient ratio is 

for test 1 which has approximately the same process parameters. It could be that 

the transfer coefficient for configuration 1 is over predicted for these process 

parameters. If this was the case all other tests would also indicate negative or 

close to zero transfer coefficient ratios. This is however not the case. It should be 

mentioned that both configuration 3 and 8 were the first configurations tested and 

system might not have reached “steady state” for the first test. As a result test one 

for these configurations were omitted when calculating the average transfer 

coefficient ratio.  

The configuration achieving the highest transfer coefficient ratio was 

configuration 4 when comparing configuration 3 and 4. This is however slightly 

less than configuration 5 (transfer coefficient ratio of 4.5) similar to the results 

given in Steenmans (2010) where the smallest average drop size was achieved for 

the configuration 5 followed by configuration 4.  

 The effect of an additional grid on the rain zone performance 3.6

characteristics  

In the preceding section the effect of introducing a grid to the performance 

characteristics were considered. The effect of an additional grid is considered in 

this section. Steenmans (2010) found that there is a relationship between drop size 
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prior to impact and drop size after impact. This means that the additional grid 

would further reduce the size of the drop in the rain zone which can result in the 

increase of the transfer coefficient in this zone. Two drop falling heights before 

impact between the grids are considered in this section. The first is the drop 

falling height of 400 mm found to produce the highest rain zone transfer 

coefficient in section 3.4 and 3.5. The second drop falling height before impact 

considered is 800 mm. This was found according to Terblanche et al. (2009) to be 

the height producing the smallest Sauter mean diameter drop size after impact, 

although the design of the grid used in his experiments differs from the grid used 

here. The higher distance results in a higher drop impact speed causing the drop to 

be more likely to split and not drip compared to shorter distances. The effect of 

the double grid configuration (configuration 6 and 7) on the transfer-and loss 

coefficient is given in Figure 3-20, Figure 3-21 and Figure 3-22 and the test 

parameters in Table 3-4 and Table 3-5. As mentioned in section 3.5 test 7 and 8 is 

omitted due to the very small loss coefficient achieved for the rain zone below 

configuration 2 at their test conditions. The following expressions are used to 

calculate the rain zone ratio, 
         

      
 

          

       
 and for the loss coefficient 

ratio, 
            

            
 

                

            
 

 
Figure 3-20: Ratio of rain zone transfer 

coefficient for configuration 6 and 2 

 

Table 3-4: Test parameters for configuration 

6 
Test Twi [

oC] Ga [kg/s m2] Gw [kg/s m2] 

1 42.53 2.02 1.64 

2 42.02 2.00 3.14 

3 40.73 1.98 4.33 

4 40.09 1.98 3.09 

5 39.64 1.00 3.09 

6 39.38 1.95 3.07 

7 39.09 2.90 3.08 

8 38.81 3.39 3.09 

9 37.95 1.99 3.06 
 

 
Figure 3-21 Ratio of rain zone transfer 

coefficient for configuration 7 and 2 

 

Table 3-5 Test parameters for configuration 

7 
Test Twi [

oC] Ga [kg/s m2] Gw [kg/s m2] 

1 36.8 1.96 1.53 

2 36.41 1.94 3.07 

3 36.41 1.93 4.32 

4 36.29 1.94 3.08 

5 35.98 1.01 3.07 

6 35.82 2.00 3.08 

7 35.80 2.96 3.06 

8 35.47 3.42 3.06 

9 34.76 1.96 3.07 
 

The average transfer coefficient ratio is found to be 5.729 and 6.097 for 

configuration 6 and 7 respectively. The corresponding average ratio for the loss 
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coefficient was found to be 2.227 and 2.291 for configuration 6 and 7 

respectively.  

 
a) Configuration 6 

 
b) Configuration 7 

Figure 3-22: Ratio of rain zone loss coefficient for configuration 6/7 and 2 

It should be mentioned that although there is an increase in the transfer coefficient 

of the rain zone there is also an increase in the loss coefficient. The increase in the 

loss coefficient could possibly negate the increase in the transfer coefficient in a 

natural draught wet cooling tower. This means this type of configuration will not 

necessarily give the best performance in a cooling tower. 

 Effect of extending the rain zone below configuration 2, 5 and 7 on the 3.7

rain zone performance characteristics 

The effect of rain zone height on the performance characteristics are investigated 

in this section. The rain zone below configurations 2, 5 and 7 is extended and 

results presented here. The results are for configurations 8, 9 and 10. As 

mentioned in section 3.5 and 3.6 test 7 and 8 are omitted when calculating the loss 

coefficient ratio. The transfer coefficient ratio were calculated using the following 

expression, 
            

      
 

             

       
 and for the loss coefficient ratio, 

               

         
 

                   

             
. 

The rain zone height was increased from 2105 mm to 4168 mm representing an 

almost 2 fold increase. The performance characteristics for configuration 8 

(extended rain zone below configuration 2) is shown in the Fig. 3-23 and 3-24.  
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Figure 3-23: Ratio of rain zone transfer 

coefficient for configuration 8 and 2 

Table 3-6: Test parameters for 

configuration 8 
Test Twi [

oC] Ga [kg/s m2] Gw [kg/s m2] 

1 47.19 2.02 1.62 

2 46.98 2.00 3.04 

3 46.78 2.02 4.55 

4 46.40 2.04 2.99 

5 46.27 1.06 3.00 

6 46.02 2.02 2.98 

7 45.97 3.02 2.98 

8 45.85 3.44 2.98 

9 44.40 2.02 3.00 
 

 
                                         

 

There is a slight increase of transfer coefficient with increasing rain zone height 

amounting to a factor of approximately 1.06. The loss coefficient also increases 

with a factor of approximately 1.224. However the increases are not significant 

and indicate that the rain zone height has a negligible effect on the transfer or loss 

coefficient for configuration 2. 

The performance characteristics for configuration 9 (extended rain zone below a 

single grid configuration) are shown in Figure 3-25 and Figure 3-26 and the test 

parameters in Table 3-7. The transfer coefficient increases by a factor of 2.89 and 

the loss coefficient by 1.56 compared to the rain zone below configuration 2. The 

loss coefficient does not show a significant change, however the transfer 

coefficient for extended section indicates a decrease in performance where the 

average ratio decrease from 4.5 for configuration 5 to 2.893 for the extended rain 

zone configuration, configuration 9. The transfer coefficient decreases down the 

length of the rain zone as a result of a decrease in residence time per meter rain 

zone as the drop accelerates through the rain zone (assuming the drop diameter 

stays approximately constant and the drop size distribution remains unchanged 

throughout the rain zone). This decrease in residence time is more evident for 

smaller drops. This is why the decrease in transfer coefficient is less obvious for 

configuration 8 due to the larger drop sizes (less air-water interfacial area). A 

similar decreasing trend for the transfer coefficient ratio is found for configuration 
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Figure 3-24: Ratio of rain zone loss coefficient for configuration 8 and 2 
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10 (shown in Figure 3-27 for the transfer coefficient and Figure 3-28 for the loss 

coefficient), where the average transfer coefficient ratio decreased from 6.097 to 

3.388 for configuration 7 and 10 respectively. It can also be seen that the average 

loss coefficient ratio is approximately constant when comparing configuration 5 

(1.500) and configuration 9 (1.560). The same is valid for configuration 7 (2.317) 

and 10 (2.017). This corresponds to the modelling done by Reuter (2010), which 

indicates that loss coefficient stays approximately constant for drop path lengths 

of greater than two meters.  

 

 
Figure 3-25: Ratio of rain zone transfer 

coefficient for Configuration 9 and 2 

Table 3-7: Test parameters for 

configuration 9 

 
Test Twi [

oC] Ga [kg/s m2] Gw [kg/s m2] 

1 40.65 2.05 1.40 

2 38.43 2.02 2.92 

3 38.27 2.00 4.59 

4 36.29 1.97 2.97 

5 35.94 1.05 2.96 

6 35.90 2.01 2.96 

7 35.70 2.96 2.96 

8 35.38 3.42 2.95 

9 34.66 1.95 2.95 
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Figure 3-26: Ratio of rain zone loss coefficient for configuration 9 and 2 
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Figure 3-27: Ratio of rain zone transfer 

coefficient for configuration 10 and 2 

Table 3-8: Test parameters for 

configuration 10 
Test Twi [

oC] Ga [kg/s m2] Gw [kg/s m2] 

1 43.22 1.97 1.49 

2 43.11 1.95 2.95 

3 43.10 1.98 4.41 

4 43.07 2.00 3.01 

5 43.03 1.05 2.99 

6 42.97 2.01 2.99 

7 42.96 2.98 2.98 

8 42.88 3.39 2.97 

9 42.18 1.99 2.97 

 
 

 
 
               

 

 Effect of placing the grid diagonally on the rain zone performance 3.8

characteristics 

The effect of placing a grid diagonally below a fill on the rain zone‟s performance 

characteristics is shown in Figure 3-29 and Figure 3-30 for the transfer-and loss 

coefficient ratios respectively. The ratios were calculated according to 
       

      
 

        

       
 and 

          

         
 

              

             
 for the transfer- and loss coefficient 

respectively.  

Placing the grid at an angle of 2
o
 has a negligible effect on the performance of the 

rain zone as is evident when comparing configuration 9 and configuration 11 

where the average transfer coefficient ratio is found to be 2.893 and 2.514 

respectively. The average loss coefficient ratio was found to be 1.427 
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Figure 3-28: Ratio of rain zone loss coefficient for configuration 10 and 2 
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Figure 3-29: Ratio of rain zone transfer 

coefficient for configuration 11 and 2 

Table 3-9: Test parameters for 

configuration 11 
Test Twi [

oC] Ga [kg/s m2] Gw [kg/s m2] 

1 42.32 2.02 1.38 

2 41.88 2.00 3.11 

3 40.59 1.98 4.40 

4 39.26 2.01 3.07 

5 37.99 0.96 3.05 

6 36.99 1.96 3.06 

7 35.91 2.91 3.05 

8 35.44 3.45 3.05 

9 34.73 1.93 3.08 
 

 
 

 

 Conclusion 3.9

The introduction of the grid below the conventional film fill had a significant 

effect on this zone‟s transfer coefficient, increasing it by a factor of approximately 

4.5, while it had less of an effect on this zone‟s loss coefficient increasing it by a 

factor of approximately 1.5 compared to an unaltered rain zone (rain zone below 

configuration 2). 

The drop falling height for a single grid configuration producing the highest rain 

zone transfer coefficient was found to be 400 mm or configuration 5. 

The double grid configuration achieved the highest transfer coefficient compared 

to the other configurations however also had the highest loss coefficient as a result 

of the additional grid and smaller average rain zone drop sizes. This could 

possibly negate the higher transfer coefficient in a natural draught wet cooling 

tower.  

Increasing the rain zone height had a negligible effect on the loss coefficient, 

however showed a decrease in rain zone transfer coefficient. This decrease was 

attributed to the decrease in drop residence time in the rain zone with increasing 

rain zone drop path length.  
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Figure 3-30: Ratio of rain zone loss coefficient for configuration 11 and 2                                                                                                         
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Lastly the placement of the grid at an angle of 2
o 

was also investigated and was 

found to have a negligible effect on the performance of the rain zone. Table 3-10 

gives a summary of the results presented in chapter 3. 

Table 3-10: Average rain zone transfer-and loss coefficient ratios for the different 

configurations 

Configuration x Description        
       

 
             

             

 

3 Grid 200 3.18 1.73 

4 Grid 300 4.45 2.12 

5 Grid 400 4.5 1.5 

6 Additional 

grid 400 

5.73 2.63 

7 Additional 

grid 800 

6.097 2.85 

8 Fill extended 

rain zone 

1.06 1.06 

9 Grid 400 

extended rain 

zone 

2.89 1.86 

10 Additional 

grid 800 

extended rain 

zone 

3.39 2.51 

11 Diagonal grid 

extended rain 

zone 

2.51 1.62 
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CHAPTER 4 RAIN ZONE DROP SIZE 

The effect of the introducing a grid below a conventional film fill on the rain zone 

Sauter mean diameter (drop size) is presented in this section. The drop size is 

inferred from the rain zone‟s transfer coefficient according to the algorithm shown 

in Fig. 4.1. The purely counterflow one dimensional rain zone model referred to in 

the algorithm can be found  Kröger (2004). A sample calculation can be found in 

Appendix D. The purpose of calculating the Sauter mean drop diameter is to be 

able to utilize the experimental data from chapter 3 in the De Villiers and Kröger 

(1997) one dimensional NDWCT rain zone model as presented in chapter 5 to 

determine the effect of the rain zone modification on cooling tower performance.  

 

Figure 4-1: Rain zone Sauter mean drop diameter algorithm 

The Sauter mean drop diameter for several configurations is given in this section. 

This includes Sauter mean drop diameter below configuration 2, 3, 4, 5, 7 and 11. 

 Rain zone drop size below a conventional fill (configuration 2)  4.1

The rain zone Sauter mean drop diameter below configuration 2 is shown in this 

section. More configuration details can be found in chapter 3. The rain zone 

Sauter mean diameter drop diameter in the 2105 mm rain zone for three different 

water inlet temperature ranges and water mass velocities using the Kröger purely 

counter flow transfer coefficient correlation is shown in Figure 4-2. Terblanche et 

al. (2009) found that the mass velocities for both water and air had a minimal 

effect on the Sauter mean drop diameter below the fill and is mostly a function of 

the fill used. This is confirmed in the figures below. Thus an overall Sauter mean 

drop diameter will be calculated for a specific configuration. There are a number 

of outliers as a result of a small rain zone transfer coefficient.   

The rain zone Sauter mean drop diameter below configuration 2 for the three tests 

shown in Figure 4-2 was found to be 6.527 mm (including the outliers). 

Terblanche et al. (2009) found that it is uncommon to find a drop diameter larger 
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than 10 mm in the rain zone. These sized drops are often unstable and usually 

breaks into smaller drops. By omitting the drops  larger than 10 mm the rain zone 

Sauter mean drop diameter was found to be 6.08 mm. Terblanche et al. (2009) 

found a typical rain zone Sauter mean drop size distribution between 5 and 6 mm 

below cross fluted film fills. 

 
a) Twi = 46 oC – 39 oC 

 
b) Twi  = 38 oC – 36oC 

 
c) Twi = 36 oC – 28 oC 

 

 

Figure 4-2: Rain zone Sauter mean drop diameter below configuration 2  

 Rain zone drop size below a single grid 4.2

This section presents the rain zone Sauter mean drop diameter below 

configuration 5. These configurations consist of a spray zone, fill zone, rain zone 

between fill and grid and rain zone below the grid. Subtracting the fill 

performance, as determined in chapter 3, would result in a rain zone above and 

below the grid, however only the drop size below the grid is of importance. The 

rain zone height above the grid is approximately 120 mm and the drop size is 

known from section 4.1, since this is the drop size exiting the fill. In order to 

isolate the rain zone below the grid it is necessary to determine the correlation for 

the transfer coefficient per meter rain zone above the grid. The correlation was 

determined in section 3.3. By substituting the conditions (i.e. Twi, Ga, Gw) for the 

test considered here the transfer coefficient for the small rain zone above the grid 

per meter rain zone is determined. In order to deduct this value from the combined 

transfer coefficient it must be multiplied with the height of the small rain zone 

0

4

8

12

16

0 1 2 3 4

d
3

2
 [

m
m

] 

Ga [kg/s m2] 

0

4

8

12

16

0 1 2 3 4

d
3

2
 [

m
m

] 

Ga [kg/s m2] 

0

4

8

12

16

0 1 2 3 4

d
3

2
 [

m
m

] 

Ga [kg/s m2] 

○ Gw = 1.5 kg/s m2 

Δ Gw = 3 kg/s m2 

□ Gw = 4.5 kg/s m2 

Stellenbosch University  https://scholar.sun.ac.za



51 

 

(i.e. 0.12 mm). The resulting transfer coefficient below the grid is then found. The 

newly determined transfer coefficient and height below the grid is the parameters 

to use in calculating the rain zone Sauter mean drop diameter. 

The resulting Sauter mean drop diameter is shown in Fig. 4-3. The rain zone 

Sauter mean drop diameter was found to be 2.56 mm 

 
a) Twi = 50 oC – 43 oC 

 
b) Twi = 43 oC – 37 oC 

 
c) Twi  = 36 oC – 32 oC 

 

 

 

Figure 4-3: Rain zone Sauter mean drop diameter below configuration 5 

 Effect of drop falling height before impact on rain zone Sauter mean 4.3

drop diameter 

The rain zone Sauter mean drop diameter for the rain zone below configurations 3 

and 4 is presented in this section. Steenmans (2010) found the smallest drop size 

for a drop falling height of  400 mm. This was followed by the 300 mm and 200 

mm configuration respectively.  

The rain zone Sauter mean drop diameter for configuration 3 is calculated by 

subtracting configuration 1‟s transfer coefficient from configuration 3‟s transfer 

coefficient. Configuration 1‟s performance test rain zone height was 280 mm, 

which is higher than the distance between the fill and grid for configuration 3. 

This means the performance of the configuration 3‟s rain zone is underestimated 

since an additional 80 mm of rain zone below the fill is deducted from this 

configuration‟s performance. This additional performance must be added to 
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configuration 3‟s rain zone transfer coefficient to obtain the true transfer 

coefficient below the grid. The rain zone Sauter mean drop diameter for this 

configuration is shown in Figure 4-4. The test conditions can be found in Table 

3-2. 

 

Figure 4-4: Rain zone Sauter mean drop diameter below configuration 3 

The rain zone Sauter mean drop diameter for configuration 3 was found to be 

2.956 mm.  

The rain zone Sauter mean drop diameter for configuration 4 is shown in Figure 

4-5 and test conditions in Table 3-3. In this case the additional 20 mm of rain zone 

above the grid is deducted in a similar process as in configuration 3..  

 

Figure 4-5: Rain zone Sauter mean drop diameter for configuration 4 

The rain zone Sauter mean drop diameter for configuration 4 was found to be 2.83 

mm. The rain zone Sauter mean drop diameter for configuration 3, 4 and 5 is 

summarized in Table 4-1.  

Table 4-1: Rain zone Satuer mean drop diameter for configuration 3, 4 and 5 

Configuration d32 [mm] 

5 2.56 

4 2.83 

3 2.96 
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It can be seen from Table 4-1 there is a decrease in rain zone Sauter mean drop 

diameter with an increase in drop falling height before impact. A similar trend 

was found by Steenmans (2010). 

 Rain zone Sauter mean drop diameter for configuration 6  4.4

The effect of a double grid configuration on the rain zone Sauter mean drop 

diameter are presented here. It is expected that two grids will decrease the Sauter 

mean drop diameter. The first grid below the fill will break the drop as before, 

however this changes the drop size before impact to the second grid which can 

result in a smaller drop size below the second grid. In order to isolate the transfer 

coefficient below the second grid it is important to know the transfer coefficient 

per meter rain zone for the rain zone exactly below the fill (i.e. above the first 

grid) and exiting the first grid (below the first grid). The correlation for this is 

given in section 3.3 and 3.4. This is deducted from the overall rain zone transfer 

coefficient for this configuration and as a result isolating the rain zone transfer 

coefficient below the second grid.  The resulting drop size associated with the 

transfer coefficient below the second grid for configuration 6 is given in Figure 

4-6 with the test conditions given in Table 3-7. 

 

Figure 4-6: Rain zone Sauter mean drop diameter below the second grid for configuration 6 

The rain zone Sauter mean drop diameter below the second grid for configuration 

6 was found to be 2.31 mm. 

The same procedure was followed for determining the rain zone Sauter mean drop 

diameter below the second grid for configuration 7 with the test conditions given 

in Table 3-8 and is presented in Figure 4-7. 
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Figure 4-7: Rain zone Sauter mean drop diameter below the second grid for configuration 7 

The rain zone Sauter mean drop diameter below the second grid of configuration 

7 was found to be 2.68 mm.  

 Conclusion 4.5

The smallest rain zone Sauter mean drop diameter after impact for the single grid 

configurations i.e. configurations 3, 4 and 5 was found to be 2.56 mm for a drop 

falling height before impact of 400 mm (configuration 5) and 2.31 mm for the 

double grid configuration drop falling height before impact between the first and 

second grid of 400 mm for configuration 6. Table 4-2 provides a summary of the 

results.  

Table 4-2: Rain zone Sauter mean drop diameter for configurations 3, 4, 5, 6, 7 

Configuration d32 [mm] 

3 2.96 

4 2.83 

5 2.56 

6 2.31 

7 2.68 
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CHAPTER 5 THE EFFECT OF DIFFFERENT FILL CONFIGURATIONS 

ON THE PERFORMANCE OF A NDWCT 

The NDWCT performance in this section is modelled using a one dimensional 

model employing the Merkel method for performance evaluation. Fig. 5-1 gives a 

labelled drawing of a typical NDWCT. The model is solved by following an 

iterative method that satisfies both the draught equation and energy balance across 

the NDWCT.  

 

Figure 5-1: Labelled drawing of a typical NDWCT 

 Cooling tower model  5.1

The one dimensional NDWCT model as given in Kröger (2004) is used for 

modelling a NDWCT located at a South African power utility, Eskom, coal fired 

power station. 

Table 5-1 shown below contains the iteration parameters for a converged solution, 

the Reuter iteration parameters and the difference between these values both 

based on example 7.3.2 Kröger (2004). A sample calculation, input and output 

parameters are given in appendix E 
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Table 5-1: NDWCT one dimensional iteration parameters 

Iteration 

parameter 

Symbol Michaels Reuter Difference 

Air-vapour mass 

flow rate through 

fill 

mav15 16 808.98 kg/s 16 810.89 kg/s 0.011 % 

Air pressure after 

drift eliminators 

pa5 83 937.72 N/m
2 

83 937.7 N/m
2
 0.000 % 

Temperature 

after drift 

eliminators 

Ta5 26.438 
o
C 26.437 

o
C 0.005 % 

Air pressure at 

tower outlet 

pa6 82 650.58 82 650.6 0.000 % 

Water outlet 

temperature 

Two 21.39 
o
C 21.39 

o
C 0.062 % 

Table 5-3 shows the design data for the cooling tower. A natural draught wet 

cooling tower fitted with asbestos cement flat sheet film fill, containing drift 

eliminators, water distribution system, spray zone, fill zone and rain zone is 

investigated in this section. The correlation for the transfer-and loss coefficient of 

which the form is given in equations (5-1) and (5-2) respectively was obtained by 

linear extrapolation using the coefficients for asbestos flat sheets as given in 

Kröger (2004) and presented in Table 5-2. 

    (         ) ad (
  

  

)
 bd

    5-1 

     (         )    (
  

  

)         5-2 

Table 5-2: Asbestos flat sheet film fill performance characteristics for different sheet spacing 

Asbestos flat sheet 

spacing [mm] 

44.4 38.1 31.8 25.4 22.5 

(tower 1) 

Transfer coefficient      

ad 0.2887 0.361 0.94 0.459 0.4823 

bd  0.7 0.72 0.76 0.73 0.7539 

Loss coefficient      

ap 0.725 0.936 0.77 0.89 0.8949 

bp 1.37 1.3 1.7 1.7 1.7902 

The fill currently installed in the cooling towers that are investigated is asbestos 

cement flat sheets. The height of the installed fill in the cooling tower is 2.4 m. 

The thickness of the Asbestos flat sheets are 4 mm and spacing of the flat sheets is 

22.5 mm on the periphery of the tower and 25.4 mm in the centre of the tower 

with frontal area (Afr) of 6 500 m
2
. The fill with the 22.5 mm spacing constitutes 

38 % of the fill wetted surface area and the fill with the 25 mm 62 %.The one 

dimensional model can however not model variation in fill characteristics. The 

weighted average of each fill‟s characteristic was used for the modelling of the 

variation in fill using the fill wetted surface area as the basis.  

Table 5-4 gives the performance data as calculated using the one dimensional 

cooling tower model as found in Kröger (2004) and cooling tower 1 design data as 
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input parameters and compares it with the original design performance data. It 

was found that the one dimensional model compares well with the original design 

data for the re-cooled cooling water temperature. 

The current performance of the cooling tower is considered below. 

A performance test was conducted on cooling tower 1 in October 2002 following 

the cleaning and repairs of the water distribution system to determine how 

effective the cleaning was.  

Table 5-5 shows the results for the performance test data as well as ambient 

conditions conducted in October 2002.  

Table 5-3: Cooling tower design parameters 

Water conditions:    

Water mass flow rate: mw   12 500 kg/s 

Water inlet temperature: Tw5   39.44 
o
C 

Ambient conditions:   
 

Air temperature at ground level: Ta1   15.45 
o
C 

Wetbulb temperature at ground level: Ta1wb   11.05 
 o
C 

Atmospheric pressure: pa1   84 100 N/m
2 

Ambient temperature gradient: dTa/dz    -0.00975 K/m 

Cooling tower specifications:    

Tower height:  H6   126.7 m 

Tower inlet height H3   7.157 m 

Tower inlet diameter d3   85.6 m 

Tower outlet diameter d6   51.821 m  

Number of tower supports  nts   72 

Length of tower supports Lts   8.5 m 

Diameter of support dts    0.76 m 

Drag coefficient of tower support 

(round) 

CDts    1.0 

Shell thickness (inlet) ts    0.86 m 

Fill specifications:    

Fill height Lfi    2.4 m 

Fill performance characteristics: 

Transfer coefficient: 

    (         )  0.1848 (
  

  

)
 0.7529

       (
  

  

)
     

     

Loss coefficient: 
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     (         )           (      (
  

  

)        )             (
  

  

)

      

Other specifications:    

Frontal area of fill Afr =  6 500  m
2 

Depth of spray zone above fill Lsp =  1.0  m 

Mean drop diameter in rain zone dd =  0.005  m 

 
Table 5-4: Performance comparative data for Kröger one dimensional model and original 

design data 

Parameter 1 D model  Original design 

Type of fill Film Film 

Fill height, Lfi [mm] 2 400 2 400 

Lsp [mm] 1 000 1 000 

   

Outlet water 

temperature, Two [
o
C] 

22.51 22.5 

Cooling tower range, 

ΔTw [
o
C] 

16.93 16.94 

Approach, ΔTapp [
o
C] 11.46 11.45 

 

Table 5-5: Cooling tower 1 latest performance test results 

Water conditions:    

Water mass flow rate: mw = 14857  kg/s 

Water inlet temperature: Tw5 = 44.61 
o
C 

Ambient conditions:   
 

Air temperature at ground level: Ta1 = 25.35 
o
C 

Wetbulb temperature at ground level: Ta1wb = 15.98 
 o
C 

Atmospheric pressure: pa1 = 84 100 N/m
2 

Ambient temperature gradient: dTa/dz = -0.00975 K/m 

Results :    

Re-cooled water temperature Two = 29.09 
o
C 

Cooling tower range Δ r = 15.52 
o
C 

The current performance is modelled by using the data in  

Table 5-5. As mention earlier the performance test was carried out after the 

cleaning and repairs of the water distribution system. This means that the current 

deterioration of the cooling tower performance is mostly attributed to the 

degradation of the fill. There are two factors that are currently responsible for the 

fill degradation, which include: missing/broken fill and fouling of fill. For the 

current cooling tower under investigation the latter is a major contributor to the 

degradation of the performance.  
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The fouling of fill will result in increase in the loss coefficient across the fill 

resulting in decrease in draught i.e. air mass flow rate through the cooling tower 

leading to decrease in cooling tower performance.  

The fouling will be modelled as an increase in flow resistance as a result of the 

smaller spacing between the sheets. This increase is incorporated in the fill loss 

coefficient. Although the spacing between the fill sheets is different the 

correlation for the transfer coefficient will remain unchanged since the fill transfer 

area remains unchanged. The decrease in transfer coefficient is as a result of the 

decrease in air mass flow rate caused by the increase in flow resistance. The new 

loss coefficient correlation was found through an iterative process by changing the 

total loss coefficient until the re-cooled water outlet temperature as given in Table 

5-5 is reached. The correlations for both the transfer-and loss coefficient are given 

in Table 5-6 and the results given in Table 5-7. 

 Cooling tower modelling 5.2

There are several performance enhancement methods investigated in this section. 

These include replacing the current fill with new types of modern fill and 

introduction of a grid below a conventional fill to reduce rain zone Sauter mean 

diameter. Four different fills are investigated in this section. These include three 

different film fills, including the current fill installed and one trickle fill. All fills 

would have to use the existing tower configurations which results in the fill height 

being limited to 2 400 mm as this is the current maximum height. The spray zone 

height of the cooling tower will remain constant at Lsp = 1 000 mm, while the fill 

height Lfi can vary to achieve the optimum height for the specific fill limited to a 

height of 2 400 mm and finally the rain zone height which can vary as well 

depending on the fill height, however it has a minimum height of Hrz = 7 157 mm. 

It should also be noted that the effect of the air flow at the cooling tower inlet as a 

result of the change in rain zone height was not modelled. 

Table 5-6.shows the performance characteristics of the different fills used. It 

should be mentioned all performance characteristics were determined using the 

Merkel method. Some of the correlations parameters were given in imperial units, 

which are converted directly in the correlation. The current characteristics of the 

installed fill including the effect of fouling is also given in the table below. It 

should however be noted that only the correlation for the loss coefficient is 

different from the clean installed fill and the current condition of the fill, which 

was discussed earlier in this section.  
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Table 5-6: Performance characteristics for different fills  

Fill  

Transfer coefficient  

Asbestos flat sheet 

(clean and fouled):     (         ) (0.1848 (
  

  

)
 0.7529

 0.2832 (
  

  

)
 0.73

)    

High performance Fill:      2.746  
 0.984  

0.73   
 0.104   

 0.085 

Anti-fouling film fill: 
      0.1744 (

  

  

)
0.64362

(
60  

0.3048
)
0.18373

(
   

0.3048
)
0.69676

 

Trickle fill:      3.931  
 0.857  

0.644   
 0.285   

 0.294 

Loss coefficient  

Asbestos flat sheet 

(clean): 
     (           )    (0.3831 (0.8949 (

  

  

) 1.7902) 

  0.6169(0.89 (
  

  

) 1.7) 

Asbestos flat sheet 

(Fouled): 
     (           )    (3.9065 (

  

  

) 7.5974) 

High performance Fill:      (4.499  
0.359  

 1.122 9.577  
0.028  

0.056)   
 0.043 

Anti-fouling film fill: 
     498.1778Δ          (

   

     

)

2

 

  498.1778 
    

(
   

     

)

2

(0.13257 10 6 (
60  

0.3048
)
1.9965

 

   1.472513   (0.60829 10
 3 0.79793 10 8 

   (
60  

0.3048
)
2

)) (
   

0.3048
) (0.06243 

    
)/0.07 

Trickle fill:      (3.402  
0.067  

 0.022 1.324  
0.798  

 1.777)   
0.055 

 Effect of changing the fill on NDWCT performance 5.3

Table 5-7 and 5-8 below shows the performance results when installing different 

fill in the cooling tower. The optimum height for the different fill is not 

necessarily the same height as the current installed fill leaving room for an 

additional rain zone. Tables 5-7 and 5-8 below shows the effect of leaving the rain 

zone height at the original height and the other is to increase it.  
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Table 5-7: Cooling tower one performance results constant inlet temperature 

Parameter  Units Asbestos 

flat sheet 

(clean) 

 

Asbestos 

flat sheet 

(fouled) 

High 

perform-

ance film 

fill 

Anti-

fouling 

film fill 

Trickle 

fill 

Type of fill   Film Film  Film Film Trickle 

Fill height Lfi mm 2 400 2 400 1 220 1 660 1 220 

Spray zone 

height 

Lsp mm 
1 000 1 000 1 000 1 000 1 000 

Rain zone 

height 

Hrz mm 
7.157 7.157 7.157 7.157 7 157 

Rain zone 

drop size  

dd mm 
5 5 5 5 

 

5 

Air mass 

flow rate 

mav15 kg/s 
11 898 9954 11 640 11 522 12 154 

Inlet water 

temperature 

T
w5 o

C 
39.44 39.44 39.44 39.44 39.44 

Outlet water 

temperature 

T
wo o

C 
22.51 23.88 21.22 20.98 22.29 

Dry bulb 

temperature 

above drift 

eliminators 

T
a5 

o
C 

29.45 30.66 30.68 30.99 29.34 

Pressure 

above drift 

eliminators 

pa5 

N/m
2
 

83 959 83 949 83 958 83 954 83 967 

Pressure at 

tower outlet 

pa6 N/m
2 82 849 82 849 82 651 82 849 82 849 

Cooling 

tower range 

ΔT
w o

C 
16.93 15.56 18.21 18.46 17.15 

Approach 
ΔT

app o
C 

11.46 

 

12.83 10.18 9.93 11.24 

 

Table 5-8 shows the effect of adjusting the rain zone to the available height after 

installing new fill at the new fill‟s optimum or recommended height. 

The best performing fill according to the one dimensional model based on the 

lowest outlet water temperature (Two), cooling tower range (ΔTw) and approach 

(ΔTapp) for both the original rain zone height (as shown in Table 5-7) and adjusted 

rain zone height based on the optimum or recommended fill height (as shown in 

Table 5-8) was found to be for the anti-fouling film fill. It should be mentioned 

that the effect of changing the inlet conditions by increasing the rain zone height 

was not taken into account. The increase in rain zone height was taken into 

account by including the increase in the rain zone transfer-and loss coefficient 

correlations. Based on these results the recommended fill would be the anti-

fouling film fill. It should however be mentioned that the fill chosen should not be 

purely based on the re-cooled outlet water temperature and should other factors 

also be considered including fouling rate.  
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Table 5-8: Cooling tower one performance results with variable rain zone height 

Parameter Units Asbestos 

flat sheet 

(clean) 

 

Asbestos 

flat sheet 

(fouled) 

High 

performa

nce film 

fill 

Anti-

fouling 

film fill 

Trickle 

pack 

Type of fill  Film Film  Film Film Trickle 

Fill height, 

Lfi  
mm 

2 400 2 400 1 220 1 660 1 220 

Lsp  mm 1 000 1 000 1 000 1 000 1 000 

Rain zone 

height, Hrz  
mm 

7 157 7.157 8.337 7.897 8.337 

Rain zone 

droplet size, 

dd 

mm 

5 5 5 5 

 

5 

Air mass 

flow rate, 

mav15  

kg/s 

11 898 9954 12 008 11 759 12 684 

Inlet water 

temperature, 

Tw5  

o
C 

39.44 39.44 39.44 39.44 39.44 

Outlet water 

temperature, 

Two  

o
C 

22.51 23.88 20.92 20.77 21.91 

Dry bulb 

temperat-ure 

above drift 

eliminators, 

Ta5  

o
C 

29.45 30.66 30.49 30.87 29.08 

Pressure 

above drift 

eliminators, 

pa5 

N/m
2
 

83 959 83 949 83 949 83 949 83 959 

Pressure at 

tower outlet, 

pa6 

N/m
2 

82 849 82 849 82 848 82 849 82 849 

Cooling 

tower range, 

ΔTw  

o
C 

16.93 15.56 18.52 18.67 17.53 

Approach, 

ΔTapp  
o
C 

11.46 12.83 9.87 9.72 10.86 

 Introduction of a splash grid to reduce rain zone drop size 5.4

The effect of introducing a splash pack grid (referred to as grid in the text) below 

a conventional fill is modelled using the one dimensional model and its effect on 

the performance of the cooling tower where performance is measured in terms of 

cooling water range, approach and water outlet temperature.  

The effect of a single grid and double grid below a conventional fill on the 

performance is modelled. In this case there are two conventional fills considered. 

This include asbestos cement flat sheet film fill (currently installed in the cooling 

tower) and anti-fouling film fill, which was found to be the best performing fill 
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from parametric study. Both a clean and fouled asbestos cement film fill is 

modelled 

Figure 5-2 below shows a schematic of the proposed configuration of the grid 

below the conventional fill installed at an angle of two degrees from the 

horizontal plane in the cooling tower. 

 

Figure 5-2: Proposed grid placement below the fill zone in a typical NDWCT 

The angle is necessary to reduce the surface area occupied by the frame of the 

grid.. Fig. 5-2 is a sketch illustrating the reduction in surface area compared to 

placing the grid horizontally adjacent and placing it at an angle.  

 
a). Horizontal grid arrangement 

 
b). Angle grid arrangement 

Figure 5-3: Grid frame surface area comparison 

The design data for the modelling of the cooling tower with the addition of the 

grid is similar to what is given in Table 5-3 with the exception of rain zone drop 

size and rain zone height, although the total rain zone height remains the same it is 
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divided into two (three in the double grid configuration) different rain zones based 

on rain zone drop size. These two rain zones would be referred to as rain zone 

above the grid and rain zone below the grid (below the second grid in a double 

grid configuration). The results for the grid modelling are given in Table 5-11 to 

Table 5-15. The grid was modelled as a screen. It is necessary to add the loss 

coefficient of the screens since the rain zone loss coefficient correlation accounts 

for the rain zone drops and not the screen. The correlation to be used is based on 

the screen Reynolds number as given below.  

    
    

   
 5-3 

Where: 

The properties shown in equation 5-3 are determined at the mean free stream 

condition of the fluid flowing across the screen. 

And    
             

          
 (  

  

  
)
 

 

The screen loss coefficient for 60 < Res < 1000 as given in Kröger (2004) is 

shown in the correlation below. 

            
     

       5-4 

The input parameters for calculating the screen loss coefficient is given in Table 

5-9.  

Table 5-9: Input parameters for calculation screen loss coefficient according to equation 5-4 

Description Symbol  Value 

Porosity of the screen (βs)   

Wire diameter ds  1 mm 

Screen pitch Ps 3 mm 

Porosity of screen  βs 0.4444 

Screen Reynolds number (Res)   

Mean density of air flowing across 

screen 

ρav15 0.9859 kg/m
3 

Mean air velocity across screen vav15 1.8067 m/s 

Mean air viscosity across screen μav15 1.84×10
-5

 kg/ms 

Screen Reynolds number  Res 217.83 

 

The resulting screen loss coefficient was found according to equation 5-4 to be Ks 

= 2.8104 

The rain zone above the grid (Hrz, above grid), which is around 400 mm, cannot be 

modelled using the correlation proposed by De Villiers and Kröger (1997), 

equation Error! Reference source not found., since it is only valid for rain zone 

heights of greater than 4 m. To account for the performance characteristics of such 

small rain zones a correlation for both the transfer-and loss coefficient was 

experimentally determined for a rain zone below a conventional film fill in section 
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5.3. Terblanche et al. (2008) found that the rain zone Sauter mean drop diameter 

for most film-and trickle fill ranges between 5-6 mm, which subsequently means 

that the aforementioned correlation can be used in most film and trickle fill cases. 

The correlations as determined in section 3.3 will thus be used for both the 

asbestos flat sheet as well as the anti-fouling fill. Similar correlations were 

determined in section 3.4 for the rain zone below the grid, which is used for the 

rain zone between grids in a double grid configuration. The rest of the rain zone 

i.e. the rain zone exiting the grid configuration can be modelled using the De 

Villiers and Kröger correlation for the transfer-and loss coefficient since the rain 

zone height is greater than 4 m. The correlations for the transfer-and loss 

coefficients of a rain zone below a conventional fill and below a single grid are 

given below in Table 5-10. 

Table 5-10: Rain zone transfer-and loss coefficient correlations 

Rain zone performance characteristics below conventional film fill  

         0.0284   
0.011  

0.6234  
 0.4412 5-5 

   

   

         
         

       5-6 

Rain zone performance characteristics below the splash grid  
    

   

          
         

        
        

5-7 

   

   

         
         

       
5-8 

The results of the effect of the grid and double grid configurations for both the 

current installed fill as well as anti-fouling film fill on the re-cooled water outlet 

temperature, range and approach are shown in Tables 11, 12 and 13.  

It is clear from Table 5-11 above that clean current asbestos cement film fill with 

a single grid installed below it gives a better performance with a re-cooled water 

outlet temperature of 21.59 
o
C compared to 22.51 

o
C of an unaltered rain zone. 

The double grid configuration was however expected to give the best performance 

due to its smaller rain zone Sauter mean drop diameter. The double grid 

configuration however only achieved a re-cooled cooling water outlet temperature 

of 21.70 
o
C compared to the single grid‟s 22.51 

o
C. The additional grid as well as 

the smaller drop size increases the flow losses throughout the cooling tower as is 

evident from the lower air flow rate as can be seen in the Table 5-11 above. This 

means the additional heat-and mass transfer as a result of the smaller rain zone 

drop size is partially negated by the additional flow resistances due to the 

additional grid and smaller Sauter mean drop diameter.  
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Table 5-11: Cooling tower 1 performance results for current clean film fill, film fill with 

single grid and film fill with double grid configuration 

Parameter Units Asbestos flat 

sheet (clean) 

 

Asbestos flat 

sheet (clean) + 

single grid 

Asbestos flat 

sheet (clean) + 

double grid 

Type of fill  Film Film/splash Film/splash 

Fill height, Lfi  mm 2 400 2 400 2 400 

Lsp  mm 1 000 1 000 1 000 

Rain zone height, Hrz mm 7 157 7 157 7 157 

Rain zone height above 

first grid, Hrz, first 
mm 

N/A 400 400 

Rain zone height above 

second grid, Hrz, second 
mm 

N/A N/A 400 

Rain zone height below 

last grid, Hrz, below 
mm 

N/A 6 757 6 326 

Rain zone drop size, dd mm 5 N/A N/A 

Rain zone drop size above 

grid, dd, above 
mm 

N/A 5 5 

Rain zone drop size below 

first grid, dd, first 
mm 

N/A 2.56 2.56 

Rain zone drop size below 

second grid, dd, second 
mm 

N/A N/A 2.31 

Air mass flow rate, mav15  kg/s 11 898 11 352 10 860 

Inlet water temperature, 

Tw5  
o
C 

39.44 39.44 39.44 

Outlet water temperature, 

Two  
o
C 

22.51 21.59 21.70 

Dry bulb temperature 

above drift eliminators, Ta5  
o
C 

29.45 30.74 31.25 

Pressure above drift 

eliminators, pa5  
N/m

2
 

83 959 83 960 83 964 

Pressure at tower outlet, pa6  N/m
2 

82 849 82 849 82 849 

Cooling tower range, ΔTw  
o
C 16.93 17.84 17.74 

Approach, ΔTapp  o
C 

11.45 

 

10.55 10.65 

 

Table 5-12 shows the effect of the single-and double grid configuration if installed 

below the fouled asbestos cement film fill.  
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Table 5-12: Cooling tower 1 performance results for current fouled film fill, fouled film fill 

with single grid and fouled film fill with double grid configuration 

Parameter Units Asbestos flat 

sheet (fouled) 

 

Asbestos flat 

sheet (fouled) + 

single grid 

Asbestos flat 

sheet (fouled) + 

double grid 

Type of fill  Film Film/splash Film/splash 

Fill height, Lfi  mm 2 400 2 400 2 400 

Lsp  mm 1 000 1 000 1 000 

Rain zone height, Hrz mm 7 157 7 157 7 157 

Rain zone height above 

first grid, Hrz, first 
mm 

N/A 400 400 

Rain zone height above 

second grid, Hrz, second 
mm 

N/A N/A 400 

Rain zone height below 

last grid, Hrz, below 
mm 

N/A 6 757 6 326 

Rain zone drop size, dd mm 5 N/A N/A 

Rain zone drop size above 

grid, dd, above 
mm 

N/A 5 5 

Rain zone drop size below 

first grid, dd, first 
mm 

N/A 2.56 2.56 

Rain zone drop size below 

second grid, dd, second 
mm 

N/A N/A 2.31 

Air mass flow rate, mav15  kg/s 9 954 9 685 9 393 

Inlet water temperature, 

Tw5  
o
C 

39.44 39.44 39.44 

Outlet water temperature, 

Two  
o
C 

23.88 22.81 22.82 

Dry bulb temperature 

above drift eliminators, Ta5  
o
C 

30.66 31.92 32.33 

Pressure above drift 

eliminators, pa5  
N/m

2
 

83 948 83 948 83 952 

Pressure at tower outlet, pa6  N/m
2 

82 849 82 849 82 849 

Cooling tower range, ΔTw  
o
C 15.56 16.63 16.62 

Approach, ΔTapp  o
C 

12.83 

 

11.76 11.77 

It can be seen from Table 5-12 above that the difference between the single-and 

double grid configuration is marginal with the single grid giving a slight better 

performance compared to the double grid configuration. In this case the 

contribution of the rain zone‟s loss coefficient to the overall cooling tower loss 

coefficient is less. This is due to the increase in flow resistance in the fill zone.  

From Table 5-13 it can be seen that the effect of the additional grid becomes more 

evident when considering the difference in cooling tower range for the single grid 

configuration and the double grid configuration. This is due to the larger 

contribution of the rain zone loss coefficient to the overall loss coefficient.  

A similar process is followed to calculate the effect of the addition of the single 

grid to the overall performance of the cooling tower, however the range is kept 

constant at 16.94 
o
C and varying the cooling tower inlet water temperature. 

Cooling towers provide a constant range for given conditions. This will reduce the 

re-cooled water temperature. The results are shown in Table 5-14. 
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Table 5-13: Cooling tower 1 performance results for anti-fouling film fill, anti-fouling film 

fill with single grid and anti-fouling film fill with double grid configuration 

Parameter Units Anti-fouling 

film fill 

 

Anti-fouling 

film fill + single 

grid 

Asbestos flat 

sheet (fouled) + 

double grid 

Type of fill  Film Film/splash Film/splash 

Fill height, Lfi  mm 2 400 2 400 2 400 

Lsp  mm 1 000 1 000 1 000 

Rain zone height, Hrz mm 7 897 7 897 7 897 

Rain zone height above 

first grid, Hrz, first 
mm 

N/A 400 400 

Rain zone height above 

second grid, Hrz, second 
mm 

N/A N/A 400 

Rain zone height below 

last grid, Hrz, below 
mm 

N/A 7 497 7 097 

Rain zone drop size, dd mm 5 N/A N/A 

Rain zone drop size above 

grid, dd, above 
mm 

N/A 5 5 

Rain zone drop size below 

first grid, dd, first 
mm 

N/A 2.56 2.56 

Rain zone drop size below 

second grid, dd, second 
mm 

N/A N/A 2.31 

Air mass flow rate, mav15  kg/s 11 759 10 852 10 511 

Inlet water temperature, 

Tw5  
o
C 

39.44 39.44 39.44 

Outlet water temperature, 

Two  
o
C 

20.77 19.71 19.87 

Dry bulb temperature 

above drift eliminators, Ta5  
o
C 

30.87 32.71 33.04 

Pressure above drift 

eliminators, pa5  
N/m

2
 

83 949 83 941 83 946 

Pressure at tower outlet, pa6  N/m
2 

82 849 82 848 82 848 

Cooling tower range, ΔTw  
o
C 18.67 19.73 19.57 

Approach, ΔTapp  o
C 

9.72 

 

8.66 8.82 

The re-cooled water outlet temperature for a constant range was found to be  

22.51 
o
C, 24.05 

o
C and 20.71 

o
C for the clean asbestos cement, fouled asbestos 

cement and anti-fouling film fill respectively. The result for the addition of a grid 

below the fill for a constant range is shown in the table below. The re-cooled 

outlet water temperature for this configuration was found to be 21.27 
o
C, 22.84 

o
C 

and 19.73 
o
C for the clean asbestos cement, fouled asbestos cement and anti-

fouling film fill respectively.  
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Table 5-14: Cooling tower 1 performance results for asbestos cement film fill (clean), 

asbestos cement film fill (fouled) and anti-fouling film fill at constant cooling  

range 

Parameter Units Asbestos 

cement flat 

sheet (clean) 

 

Asbestos 

cement flat 

sheet (fouled) 

Anti-fouling 

film fill 

Type of fill  Film Film Film 

Fill height, Lfi  mm 2 400 2 400 2 400 

Lsp  mm 1 000 1 000 1 000 

Rain zone height, Hrz mm 7 157 7 157 7 897 

Rain zone height above 

first grid, Hrz, first 
mm 

N/A N/A N/A 

Rain zone height above 

second grid, Hrz, second 
mm 

N/A N/A N/A 

Rain zone height below 

last grid, Hrz, below 
mm 

N/A N/A N/A 

Rain zone drop size, dd mm 5 5 5 

Rain zone drop size above 

grid, dd, above 
mm 

N/A N/A N/A 

Rain zone drop size below 

first grid, dd, first 
mm 

N/A N/A N/A 

Rain zone drop size below 

second grid, dd, second 
mm 

N/A N/A N/A 

Air mass flow rate, mav15  kg/s 11 900 10 229 11 404 

Inlet water temperature, 

Tw5  
o
C 

39.45 40.99 37.65 

Outlet water temperature, 

Two  
o
C 

22.51 24.05 20.71 

Dry bulb temperature 

above drift eliminators, Ta5  
o
C 

29.45 31.43 30.00 

Pressure above drift 

eliminators, pa5  
N/m

2
 

83 960 83 945 83 952 

Pressure at tower outlet, pa6  N/m
2 

82 849 82 849 82 849 

Cooling tower range, ΔTw  
o
C 16.94 16.94 16.94 

Approach, ΔTapp  o
C 

11.46 

 

13.00 9.66 
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Table 5-15: Cooling tower 1 performance results for asbestos cement film fill (clean + single 

grid), asbestos cement film fill (fouled + single grid) and anti-fouling film fill 

(single grid) at constant range 

Parameter Units Asbestos 

cement flat 

sheet (clean + 

single grid) 

 

Asbestos 

cement flat 

sheet (fouled + 

single grid) 

Anti-fouling 

film fill (single 

grid) 

Type of fill  Film Film Film 

Fill height, Lfi  mm 2 400 2 400 2 400 

Lsp  mm 1 000 1 000 1 000 

Rain zone height, Hrz mm 7 157 7 157 7 897 

Rain zone height above 

first grid, Hrz, first 
mm 

400 400 400 

Rain zone height above 

second grid, Hrz, second 
mm 

N/A N/A N/A 

Rain zone height below 

last grid, Hrz, below 
mm 

6 757 6 757 7 497 

Rain zone drop size, dd mm 5 5 5 

Rain zone drop size above 

grid, dd, above 
mm 

5 5 5 

Rain zone drop size below 

first grid, dd, first 
mm 

2.56 2.56 2.56 

Rain zone drop size below 

second grid, dd, second 
mm 

N/A N/A N/A 

Air mass flow rate, mav15  kg/s 11 480 9 743 10 344 

Inlet water temperature, 

Tw5  
o
C 

38.21 39.78 36.67 

Outlet water temperature, 

Two  
o
C 

21.27 22.84 19.73 

Dry bulb temperature 

above drift eliminators, Ta5  
o
C 

29.92 32.09 31.28 

Pressure above drift 

eliminators, pa5  
N/m

2
 

83 965 83 948 83 947 

Pressure at tower outlet, pa6  N/m
2 

82 849 82 849 82 849 

Cooling tower range, ΔTw  
o
C 16.94 16.94 16.94 

Approach, ΔTapp  o
C 

10.22 

 

11.79 8.68 

 

 Conclusion 5.5

The Kröger (2004) one dimensional NDWCT model was used to model a South 

African coal fired power station cooling tower. The performance of the tower as 

measured in October 2002 following the cleaning and repairs of the water 

distribution system. The system showed an increase of 1.2 
o
C in the re-cooled 

outlet water temperature compared to a clean tower. The deterioration of 

performance was largely attributed to the fouling of fill and was modelled as such. 

Two different NDWCT performance enhancement methods were modelled, which 

include replacing of the fill with newer type fills and introducing a grid below the 
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fill. For the modelling of the fill four different fill were considered (five if the 

fouled fill is also considered as a separate fill). These fills include the current 

installed asbestos cement flat sheets-, high performance-, anti-fouling film fill and 

trickle fill. These fills were chosen based on either their high performance or anti-

fouling combined with relatively high performance characteristics. The following 

results for the re-cooled water outlet temperature for the same tower design 

parameters and atmospheric conditions were obtained. The current installed fill if 

cleaned conditions are assumed achieved an outlet water temperature of 22.51 
o
C, 

while fouled fill achieved an outlet temperature of 23.88 
o
C. An improvement for 

the outlet temperature was achieved for both the high performance film-and 

trickle fill at 21.22 
o
C and 22.29 

o
C respectively, however the anti-fouling fill 

achieved the best performance for the fill considered achieving an outlet water 

temperature of 20.98 
o
C. 

The rain zone height was also adjusted where the adjustment depended on the fill 

optimum or recommended height. In this case the anti-fouling fill achieved the 

best performance reaching a re-cooled outlet water temperature of 20.77 
o
C. 

The introduction of a grid caused a significant increase in performance of the rain 

zone compared to the unaltered rain zone for both the single-and double grid 

configuration. For the clean asbestos cement film fill the unaltered outlet 

temperature of 22.51 
o
C was achieved compared to the single-and double grid 

outlet temperature of 21.59 
o
C and 21.70 

o
C respectively. The double grid 

configuration was expected to give the best performance, however this was not 

the case due to the increase in flow losses reducing the air mass flow rate through 

the tower. Similar results were achieved for the fouled fill which had a re-cooled 

outlet water temperature of 23.88 
o
C, 22.81 

o
C and 22.82 

o
C for the unaltered rain 

zone, single-and double grid configuration respectively. This was also the case for 

the anti-fouling film fill, which achieved a re-cooled water outlet temperature of 

20.77 
o
C, 19.71 

o
C and 19.87 

o
C for the unaltered rain zone, single-and double 

grid configuration.  

Similar modelling was done for a constant range across the cooling tower for the 

unaltered rain zone and single grid configuration for clean asbestos cement, fouled 

asbestos cement- and anti-fouling film fill. The re-cooled outlet water 

temperatures were found to be 22.51 
o
C, 24.05 

o
C and 20.71 

o
C for the clean 

asbestos cement-, fouled asbestos cement-and anti-fouling film fill respectively. 

The addition of the grid reduced the re-cooled outlet water temperature for a 

constant range to 21.27 
o
C, 22.84 

o
C and 19.73 

o
C for the clean asbestos cement-, 

fouled asbestos cement-and anti-fouling film fill respectively.  
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CHAPTER 6 CONCLUSION 

Kröger (2004) found that the rain zone can contribute up to 20% of the overall 

cooling tower performance. The introduction of a grid below a film fill on the 

performance characteristics of a rain zone was investigated.  

Several tests were conducted to determine the effect of the grid as well as the 

optimum placement below a conventional film fill. 

It was found that the grid had a significant effect on the rain zone performance 

characteristics where an increase in the transfer-and loss coefficient of 4.5 and 1.5 

respectively compared to an unaltered rain zone was achieved. This performance 

improvement was found for a drop falling height before impact of 400 mm.  

The addition of a second grid was also investigated and found that it improved the 

performance characteristics by a factor of 6.097 and 2.85 for the transfer-and loss 

coefficient respectively. It should however be mentioned that the increase in 

transfer coefficient might be negated by the increase in the loss coefficient which 

would decrease the air mass flow rate through the tower.  

A decrease in the transfer coefficient was found when extending the rain zone, 

while the loss coefficient stayed approximately constant. The decrease in the 

transfer coefficient is as a result of the decrease in the rain zone drop residence 

time with increase in drop path length.  

The addition of the grid resulted in a drop size reduction from 6 mm to 2.56 mm 

and 2.31 mm below a single-and double grid configuration, which is also used in 

the modelling of the NDWCT. 

A South African coal fired power station NDWCT is modelled using the one 

dimensional Kröger (2004) model. Two cooling tower performance enhancement 

methods are considered, which include replacing the current fill and the 

introduction of a grid below a conventional fill to reduce the rain zone drop size 

and subsequently increase the performance of the rain zone. There are four 

different fills considered which include the current installed asbestos cement-, 

high performance-, anti-fouling film fill and trickle fill. The current state of the 

asbestos cement film fill is also modelled. The current installed fill achieved a re-

cooled water outlet temperature of approximately 22.51 
o
C, while the current state 

of the installed fill achieved a temperature of 23.88 
o
C. The best performing fill 

based on the re-cooled water outlet temperature is for the anti-fouling film fill 

achieving a temperature of 20.98 
o
C. This result is achieved for a rain zone height 

of 7.157 m, however in certain cases the rain zone height is adjusted to the 

optimum or recommended fill height to achieve the best performance. The rain 

zone height is limited to 2.4 m, which is the rain zone of the current installed fill. 

The decrease in height for the fill is added to the rain zone height. The lowest re-

cooled water outlet temperature for the anti-fouling fill is 20.77 
o
C.  
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The modification of the rain zone by adding a single-or double grid below the fill 

increased the cooling tower performance. Clean-and fouled asbestos cement film 

fill as well as the best performing fill which was found to be the anti-fouling film 

fill were chosen as the conventional film fill. For the single grid configuration the 

outlet water temperature was 21.59 
o
C, 22.81 

o
C and 19.71 

o
C for the clean 

asbestos cement-, fouled asbestos cement-and anti-fouling film fill respectively. 

The same or slightly worse performance was achieved for the double grid 

configuration where the outlet temperature was found to be 21.7 
o
C, 22.82 

o
C and 

19.87 
o
C for the clean asbestos cement-, fouled asbestos cement-and anti-fouling 

film fill respectively. The slight decrease in performance was attributed to the 

increase in flow losses in the tower due to the additional grid and smaller rain 

zone drop size. The modelling was however for a constant inlet re-cooled water 

temperature. 

For a constant range across the cooling tower the re-cooled outlet water 

temperature for an unaltered rain zone was found to be 22.51 
o
C, 24.05 

o
C and 

20.71 
o
C for clean asbestos cement-, fouled asbestos cement-and anti-fouling film 

fill respectively. The addition of the grid decreased the outlet water temperature 

further to 21.27 
o
C, 22.84 

o
C and 19.73 

o
C for the clean asbestos cement-, fouled 

asbestos cement- and anti-foiling film fill. 
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APPENDIX.A CALIBRATION 

This section contains the calibration details of the instrumentation on the test 

facility, which include the flow meter, pressure transducers and thermocouples. 

A.1 Water flow meter 

An Endress and Hauser Promag 10 W electromagnetic flow meter measures the 

process water flow rate to the counter flow fill performance test section. The 

current output ranging from 4-20 mA direct current is measured against various 

flow rates. The flow to the counter flow test section is diverted to a tank next to 

the test section. The volume of the tank was calibrated by measuring the weight of 

water that filled the tank. The temperature of the water was also measured to 

determine the density since it is used for the conversion from mass to volume. The 

current against flow rate is shown in figure A-1 and the equation describing the 

curve in equation A-1. 

 

Figure A-1: Calibration curve for flow meter 

  ̇1250.8383 -4.9082,               A-1 

 

A.2 Air flow rate pressure transducer 

The air flow rate is calculated from the pressure drop across ASHRAE 51-75 

elliptical converging nozzles. This pressure drop is converted to a voltage by an 

Endress and Hauser Deltbar S PMD75 pressure transducer. A Betz manometer is 

used for calibrating the pressure transducer. A known pressure output is plotted 

against a corresponding voltage output and is shown in figure A-2 and calibration 

curve in equation A-2. 
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Figure A-2: Calibration curve for 0-10 000 N/m
2
 pressure transducer 

Δ 
   

 231.5065  248.7281  2 0.9999 A-2 

 

A.3 Fill pressure drop pressure transducer 

Pressure drop across the fill is measured using eight H-taps connected to two  

Endress and Hauser Deltabar S PMD75 pressure transducers. It is calibrated using 

a Betz manometer where the pressure drop is plotted against the voltage output. 

This is shown in figure A-3 a and b and the equation describing the calibration 

curve shown in equations A.3 and A.4  

 

a. 0-1000 N/m
2 

pressure transducer  

 

b. 0- 2500 N/m
2
 pressure transducer 

Figure A-3: Calibration curve for pressure transducers outputting pressure drop across fill 

Δ 
 
 115.7668  124.6738  2 1.0000 A-3 

 

                        2 1.0000 A-4 
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A.4 Thermocouple 

There are 17 T-type thermocouples used for measuring the water inlet 

temperature, water outlet temperature, wet-and dry bulb temperature upstream of 

nozzle and wet-and dry bulb temperature of vertical test section.. Each was 

calibrated by placing it along with a reference platinum resistance thermometer, in 

a Fluke 9142 field metrology metal well. The thermocouples were calibrated 

between 10 and 60 
o
C in intervals of 10 

o
C and the measured temperature of each 

thermocouple and resistance as measured by the platinum resistance thermometer 

recorded. The resistance as measured by the platinum resistance thermometer is 

converted to a temperature according to a calibration curve and this serves as the 

reference temperature to which the thermocouples are adjusted to. A linear 

relationship exists between the reference thermometer and thermocouples 

according to: 

     m      c 

The thermocouples were calibrated within 0.1 
o
C from the reference thermometer. 

The calibration constants are shown in Table A-1 

Table A-1: Thermocouple calibration curve constants 

Thermocouple m c 

Water side   

A 1 0.9981 0.7186 

A 2 0.9953 0.7742 

A 3 1.0008 0.7188 

FE 1 1.0152 -0.3270 

FE 2 0.9987 0.1780 

FE 3 1.0012 0.0973 

FW 1 0.9964 0.4946 

FW 2 0.9969 0.1860 

FW 3 0.9973 0.5994 

Air side   

ATn 1 0.9904 1.0947 

ATn 1 wb 0.9915 0.9469 

ATn 2 0.9900 0.9765 

ATn 2 wb 0.9920 0.8380 

ATn 3 0.9887 0.7648 

ATn 3 wb 0.9892 0.7013 

ATn 4 0.9939 0.5972 

ATn 4 wb 0.9951 0.6032 

AT 1 0.9986 -0.0729 

AT 1 wb 1.0009 - 0.0783 

AT 2 1.0023 - 0.0924 

AT 2 wb 0.9998 - 0.0582 

AT 3 1.0055 -0.0839 

AT 3 wb 1.0018 0.0928 

AT 4 1.0054 0.1927 

AT 4 wb 0.9973 0.4999 
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The deviation of the counter flow test section air side thermocouples before and 

after calibration is shown in figure A-4 

 
a. AT 1 

 
b. AT 1 wb 

 
c. AT 2 

 
d. AT 2 wb 

 
e. AT 3 

 
f. AT 3 wb 
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g. AT 4 

 
h. AT 4 wb 

Figure A-4: Before and after calibration deviation from the reference temperature for the 

counter flow test section airside thermocouples
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APPENDIX.B SAMPLE CALCULATION AIR MASS FLOW RATE 

The method for determining the air mass flow rate from the pressure drop across 

the nozzles is covered in this section. An iterative method is utilized to obtain the 

air mass flow rate from pressure drop across nozzles. 

Test conditions:    

    

Atmospheric pressure pa  = 100 410  N/m
2 
 

Pressure drop across nozzle dpnoz = 48.73  N/m
2 

Wetbulb temperature upstream from 

nozzle 

Twb = 13.2  
o
C 

Dry bulb temperature upstream from 

nozzle 

Tai = 17.55  
o
C 

   
 

Nozzle and system specifications:    

   
 

Nozzle diameter dn = 0.3  m 

Nozzle area  An = 0.071  m2 

Area upstream from nozzle Atus = 4  m2 

Number of nozzles #Nozzles = 3 

The iterative method for calculating the mass flow rate requires the specification 

of an initial mass flow rate. An initial mass flow rate is calculated using Bernoulli. 

This is shown below. 

Thermophysical properties:    

    

Vapour pressure pvap = 1515  N/m
2 

Humidity ratio w = 0.011 

Air-vapour density  av = 1.195  kg/m
3 

The air mass flow rate is calculated from Bernoulli, equation B-1 shown below 

           ̇          

(

  
 .2 (

  
   

 
  

)
0.5

/

[.
 

  
  

 

    
 /

   

(
 
 
  

)  ]
)

  
 

 B-1
 

= 2.289 kg/s  

As mentioned before the mass flow rate calculated using equation B-1 serves only 

as an initial guess. There are two underlying assumptions made leading to 

inaccuracies by using equation 1-1 the iterative method does not make. These 

assumptions include constant fluid properties before and after the nozzle and a flat 
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velocity profile. This value calculated using the Bernoulli equation does however 

serve as a good initial guess. The iterative method is shown below.  

The parameters shown in equation B-2 are calculated below. 

            (        )
   

 B-2
 

The nozzle discharge coefficient, Cn, is a function of Reynolds number according 

to: 

For 3 104     10
5 

   0.954803 6.37817 10 7    4.65394 10
 12   

2                 
  B-3 

 

For 105     3.5 10
5 

   0.9758 1.08 10 7    1.6 10
 13   

2 B-4 

For     3.5 10
5
 

   0.994 B-5
 

Where     
        

      
. 

The gas expansion factor, according to Kröger (2004) 

   1 3 .
  

   

4 
  
1.4

/ B-6
 

The approach velocity, as given by Kröger (2004) 

  1 0.5.
  

   

/

2

 2 .
  

   

/

2
  

   

1.4 
  

 

B-7 

 

The inlet density is necessary for calculating the mass flow rate, however it is a 

function of the inlet pressure, which is given by: 

     
   

  
   

 
B-8 

 

Where the dynamic pressure is given by  

     0.5 
   
   
2  B-9

 

Assuming the mass flow rate stays approximately constant through the nozzle the 

inlet velocity is given by 
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 B-10 

It can be seen from the relations above that the inlet pressure is a function of the 

dynamic pressure, which is a function of the inlet velocity, which is a function of 

the mass flow rate, which is in turn a function of the inlet pressure. It becomes 

apparent that an iterative solution is required. The mass flow rate was found to be: 

     2.267   kg/s  
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APPENDIX.C SAMPLE CALCULATION MERKEL NUMBER AND 

LOSS COEFFICIENT 

The sample calculation presented in this section illustrates the calculation of the 

Merkel number and loss coefficient using the Merkel method of analysis. 

Test conditions:    

    

Atmospheric pressure pa = 100 700 N/m
2 

Air inlet temperature Tai = 8.08 
o
C 

Wet bulb temperature Twb = 6.35  
o
C 

Dry air mass flow rate ma = 4.44 kg/s 

Pressure drop across fill Δ fi = 22.13  N/m
2
 

Water inlet temperature Twi = 39.61  
o
C 

Water outlet temperature Two = 20.16  
o
C 

Water mass flow rate (in) mw = 3.36  kg/s 

Gravitational acceleration g = 9.81 m/s
2 

    

 Fill specifications:    

    

Fill height Lfi = 0.61  m 

Fill frontal area Afr = 2.25  m
2
 

 

Merkel number  

The Merkel number expression as shown in equation C-1 

        

  

 ∫
   

         
d  

Twi

Two

 

C-1 
 

 

Chebyshev method is used to approximate the integral numerically as given by 

equation C-2 

∫        
 

 

b a

4
(                       ) 

C-2 
 

The function is evaluated at intermediate position along the cooling tower height, 

x as shown below 

f(x1) for x1 = a + 0.1(b-a) 

f(x2) for x2 = a + 0.4(b-a) 

f(x3) for x3 = a + 0.6(b-a) 
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f(x4) for x4 = a + 0.9(b-a) 

The Merkel number in the form of the Chebyshev numerical integral given in 

equation C-3 

∫
   

           
      

   

   

         

4
(
    

Δ  
 
    

Δ  
 
    

Δ  
 
    

Δ  
)   

 

C-3
 

Assuming the specific heat of water between the inlet and outlet temperature stays  

approximately constant the Merkel number reduces to equation C-4  

        

  

 
             

4
(
1

Δ  
 

1

Δ  
 

1

Δ  
 

1

Δ  
)   

 

C-4 
 

The intermediate temperatures at which the enthalpy differentials in the 

Chebyshev integral are calculated at are shown below. 

Tw1 = Two + 0.1(Twi + Two) Tw1 = 22.11
o
C 

Tw2 = Two + 0.4(Twi + Two) Tw2 = 27.94
o
C 

Tw3 = Two + 0.6(Twi + Two) Tw3 = 31.83
o
C 

Tw4 = Two + 0.9(Twi + Two) Tw4 = 37.67
o
C 

The mean specific heat of water evaluated at     
       

2
, Twm = 29.89

o
C 

Heat capacity of water cpwm = 4179 
 
J/kg K 

The entering air enthalpy is used to determine the enthalpy away from the air 

water interface. The entering air thermophysical properties for determining the 

inlet air enthalpy. 

Entering air thermophysical 

properties: 

   

    

Specific heat of dry air cpai = 1006 J/kg K 

Specific heat of water vapour cpvi = 1866 J/kg K 

Vapour pressure pvi = 958.31  N/m
2 

Humidity ratio of entering air wi = 0.005 

Enthalpy of entering air imai = 2.502×10
6 
 J/kg 

    

Enthalpy differential 1 

thermophysical properties 

   

    

Specific heat of dry air cpa1 = 1007  J/kg K 

Specific heat of water vapour cpv1 = 1872  J/kg K 

Vapour pressure pv1 = 2662  N/m
2 

Humidity ratio of saturated air ws1 = 0.017 
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The enthalpy of saturated air at Tw1 

                273.15                     273.15   
 

= 65 421  J/kg   

Enthalpy of the air away from the air water interface at position x=x1 

With the enthalpy of the air at the air water interface and away from the air water 

interface known find the enthalpy differential at position x = x1 

Δ 1 = (imasw1 – ima1) 
 

= 37 880  J/kg K  

Similarly for intermediate enthalpies for  2, 3 and 4 

Δi2 = 44 231  J/kg  

Δi3 = 52 392  J/kg 

Δi4 = 72 403  J/kg 

The Merkel number is found to be 

   
             

4
(
1

Δ  
 

1

Δ  
 

1

Δ  
 

1

Δ  
)   

 

= 1.66 
 

Loss coefficient 

The pressure drop across the fill is due to frictional- and drag force and difference 

in momentum. The buoyancy effect due to the difference in density counteracts 

these losses, however loss still occurs since these forces don‟t balance out. The 

equation shown below formulates this effect.  

It is of interest to know frictional drag force (Δpfd) since this is caused by the fill. 

This term can however not be determined directly. It is a function of the fill 

design and along with the Merkel number is a characteristic of the fill. It is 

normally expressed as a loss coefficient as shown in equation 

    
2Δ 

  

   
 

C-6 
 

Rearranging equation C-5 and substituting it in equation C-6 above gives the 

following expression for the loss coefficient: 

     
           Two 

  

      
 

= 27 616  J/kg K  

     Δ 
  
 ( 

   
    
   

   
    
 ) ( 

   
  

   
)      C-5
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2 *Δ 

  
 ( 

   
    
   

   
    
 ) ( 

   
  

   
)    +

   
 C-7

 

The loss coefficient is based upon mean vapour flow rate and density. Equation C-

7 is substituted with the mean air vapour properties and the velocity, which is 

written in terms of mean mass flow rate, as shown in equation C-8 

    
2 *Δ 

  
 ( 

   
    
   

   
    
 ) ( 

   
  

   
)g fi+        

 

    
 

 C-8 

The inlet air density is required for the calculation of the in air mass flow rate. 

The inlet air flow rate is found to be: 

mavi = ma + wima 
 

= 4.45  kg/s 
 

The inlet air velocity is then found to be 

     
    

 
   
   

  

= 1.64  m/s 
 

From an energy balance it is known that the change in enthalpy for the air must be 

the same as the change in enthalpy for the water. This is shown below: 

ma(imao – imai) = mwcpwm(Twi – Two) 
 

Rearranging the equation above to isolate the outlet air enthalpy (imao) the 

expression below is obtained. 

     
               

  

      
 

= 82 895  J/kg 
 

It is also assumed that the air leaving the fill is saturated which means the 

condition of the outlet air is known and thus the following expression shown 

below can also be used to calculate the enthalpy at the outlet. 

ima = cpa(T-273.15) + w[ifgwo + cpv(T-273.15)]  

All the properties used in the equation shown above are a function of the outlet 

temperature. This can be found through an iterative method by minimising the 

difference between the outlet enthalpies. Tao = 24.28 
o
C is taken as the initial 

guess. To assess the correctness of the iterative solution all the necessary 

thermophysical properties are determined at the final outlet temperature. 

Entering air thermophysical 

properties 

   

    

Specific heat of dry air cpao = 1007  J/kg K 

Specific heat of water vapour cpvo = 1873  J/kg K 

Vapour pressure pvo = 3036  N/m
2 

Humidity ratio of entering air wsi = 0.019 

Enthalpy of entering air imao = 73 940  J/kg K 
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The outlet air mass flow rate is found to be 

mavo = ma + wsoma 
 

= 4.486  kg/s 
 

And the outlet air velocity to be: 

     
    

 
   

   

  

= 1.73  m/s 
 

The arithmetic mean mass flow rate through the fill 

     
         

2
 

 

= 4.486  kg/s 
 

The harmonic mean density through the fill 

      2 .
1

 
   

 
1

 
   

/

 1

 
 

= 1.185  kg/m
3  

The loss coefficient is found to be 

     
2 *Δ 

  
 ( 

   
    
   

   
    
 ) ( 

   
  

   
)    +        

 

    
 

 
 

= 13.35  
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APPENDIX.D SAMPLE CALCULATION RAIN ZONE DROP SIZE 

The drop size in the rain zone below a cross fluted film fill is calculated from the 

Kröger purely counter flow model. The following conditions and parameters are 

used in calculating the rain zone‟s  erkel number. 

Experimental conditions:    

    

Atmospheric pressure  
   

 = 101 460 N/m2 

Ambient temperature     
= 5.962 oC  

Wetbulb temperature     = 5.185 oC 

Water outlet temperature     = 16.767 oC 

Air mass flow rate    
= 4.605 kg/s 

Air mass flow rate      
= 4.629 kg/s 

Water vapour gas constant    
= 461.5   /kg  

Gravitational acceleration   = 9.8  m/s2 

Frontal area     = 2.25 m2 

Drop diameter    
= 0.0035 m 

Rain zone height     
= 3.88 m 

 

Thermophysical properties:    

    

Inlet air humidity ratio    = 0.005 

Inlet air density  
   

 = 1.262, kg/m3 

Inlet air viscosity  
   

 = 1.744 10 5 kg/ms 

Density of water  
 

 =  998.735, kg/m3 

Surface tension of water    = 0.073, N/m 

Humidity ratio of saturated air at 

outlet water conditions 

    = 0.012 

 

The air outlet velocity  

It is assumed that the air exiting the rain zone and entering the fill is at the same 

conditions as measured by the aspirated psychrometers. The resulting air velocity 

is thus found by the relation shown below. 

                    
 

 1.630  m/s 
 

 

Stellenbosch University  https://scholar.sun.ac.za



D-2 

 

Schmidt number 

    
   

/( 
   

 )  

 0.762 
 

The “a” coefficients 

           

 0.999 
 

   3.061 10 6 .
 
 
4   9

  
/

0.25

 
 

 0.999 
 

   73.298.
 5  

3

 
 
3

/

0.25

 
 

 1.007 
 

   6.122.
gσw

ρ
w

/

0.25

 
 

 1.002 
 

The rain zone Merkel number using Kröger purely counterflow model 

         

  

 3.6.
 
   

      
/ (

 

      
) (

  

  
)     33 *

ln (
   0.622
  0.622

)

    
+ 

 

  5.01134     192121.7     2.57724 
 

 23.61842{0.2539        
1.67 0.18} 

 

 {0.83666      
 0.5299 0.42}{43.0696      

0.7947 
 

 0.52   
 

 0.222 
 

The experimental rain zone Merkel number was however found to be  

(
         

  

)
   

 0.479 
 

A rain zone droplet size is obtained by following an iterative procedure of 

minimizing the difference between the calculated rain zone Merkel number and 

experimentally obtained Merkel number. The rain zone droplet was found to be 

2.203 mm 
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APPENDIX.E SAMPLE CALCULATION MODELLING OF A 

NDWCT USING A ONE DIMENSIONAL MODEL 

This section covers the sample calculation for the NDWCT one dimensional 

model as given by Kröger (2004) example 7.3.2. The sample calculation is used 

for verification of the model which is used to do a parametric study and determine 

its effect on the heat rejection rate and cooling tower approach. Figure E-1 shows 

a labelled tower used for the sample calculation. 

 

Figure E-1: Notated counter flow NDWCT 

The input parameters are shown below. 

Water conditions:    

    

Water mass flow rate mw = 12 500  kg/s 

Water inlet temperature Tw5 = 40  
o
C 
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Ambient conditions:   
 

   
 

Air temperature at ground level Ta1 = 15.45  
o
C 

Wetbulb temperature at ground level Ta1wb = 11.05  
 o
C 

Atmospheric pressure pa1 = 84100  N/m
2 

Ambient temperature gradient dTa/dz = -0.00975  K/m 

    

Cooling tower specifications:    

    

Tower height  H6 = 147  m 

Tower inlet height H3 = 10  m 

Tower inlet diameter d3 = 104.5 m 

Tower outlet diameter d6 = 60.85  m  

Number of tower supports  nts = 72 

Length of tower supports Lts = 11.6  m 

Diameter of support dts =  0.8  m 

Drag coefficient of tower support 

(round) 

CDts =  1.0 

Shell thickness (inlet) ts =  1.0 m 

    

Fill specifications:    

    

Fill height Lfi = 2.504  m 

Fill performance characteristics: 

 

Transfer coefficient: 

             0.25575   
 0.094   

0.6023 

Loss coefficient: 

             1.851  
1.2752  

 1.0356 

 

Other specifications:    

    

Frontal area of fill Afr =  8300  m
2 

Depth of spray zone above fill Lsp =  0.5  m 

Mean drop diameter in rain zone dd =  0.0035  m 
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An iterative method is employed to solve this problem. Selecting the parameters 

as listed below solves both the energy and draught equation. 

Iteration parameters:    

    

Air-vapour mass flow rate through 

the fill 

mav15 =  16 808.98  kg/s 

Pressure after drift eliminators pa5 =  83 937.72  N/m
2 

Air temperature after drift 

eliminators 

Ta5 =  26.44  
o
C 

Mean temperature of water in basin Two =  21.39  
o
C 

Pressure at tower outlet pa6 =  82 650.58  N/m
2 

   
 

The thermophysical properties at the tower inlet conditions. 

Thermophysical properties at 

tower inlet: 

   

    

Air-vapour density  av1 =  1.0101  kg/m
3 

Humidity ratio of air w1 =  0.008127  kg/kg dry air 

Heat capacity of dry air cpa1 =  1006.44  J/kg.K 

Heat capacity of water vapour cpv1 = 1869.2  J/kg.K 

Latent heat at 273.15 K ifgwo = 
 

2.5016×10
6  

J/kg.K 

Enthalpy of the inlet air ima1 =  36114.71  J/kg 

Thermophysical properties immediately after the drift eliminators where it is 

assumed the air is saturated i.e. Ta5 = Tawb5 

Thermophysical properties 

immediately after the drift 

eliminators: 

   

    

Saturated vapour pressure pv5 =  3445.27  N/m
2 

Air-vapour density  av5 =  0.96079  kg/m
3 

Humidity ratio of air w5 =  0.02676 

Heat capacity of dry air cpa5 =  1006.5515  J/kgK 

Heat capacity of water vapour cpv5 = 1873.812  J/kgK 

Latent heat at 273.15 K ifgwo = 
 

2.5016×10
6  

J/kgK 

Dynamic viscosity of air  a5 =  1.84×10
-5  

kg/ms 

Dynamic viscosity of water vapour  v5 =  1.0032×10
-5  

kg/ms 

Dynamic viscosity of air-vapour  av5 =  1.8173×10
-5  

kg/ms 

Enthalpy of air immediately after 

drift eliminators 

ima5 =  94865.621  J/kg 
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Thermophysical properties at 

water outlet: 

   

    

Density of water  wo  =  997.8696  kg/m
3 

Surface tension  σwo =  0.07256  N/m 

The harmonic mean density of air –vapour through the fill  

      2/(1/ 
   

  1/ 
   

 )    2/(1/1.0101 1/0.96079) 0.9848 kg/m3   

Mass flow rates: 

The dry air mass flow rate is calculated as shown below 

   (2     )/(2       )   2 16 808.4/(2 0.008127   0.02676) 16 520.57 kg/s  

Mass flow rate at position 1 and 5 from fig D-1 can be found to be: 

        
(1   )   16 520.57(1 0.008127) 16 654.83 kg/s  

 

       (1   )   16 520.57(1 0.02676) 16 963.13 kg/s  

Mass velocities: 

The corresponding mass velocities are as follows: 

       
    

       16 808.98/8 300  2.02518 kg/s m
2  

    
 
     16 520.57/8 300 1.99043          

      
   

     16 654.83/8 300 2.007 kg/sm
2  

      
   

     16 963/8 300 2.04375 kg/sm
2  

    
 
     12 500/8 300 1.50602 kg/sm

2  

The heat and mass transfer in the cooling tower evaluation is dependent upon the 

frontal area of the cooling tower. However the frontal area is reduced due to flow 

distortion caused by the various flow resistances. An effective frontal area must 

thus be calculated. The loss coefficients of the various flow resistances are 

required to determine the effective frontal area.  

Loss coefficients: 

The specified loss coefficient due to the fill support structure and contraction loss 

of the fill is shown below. 

             ( 
    

/ 
   

 )(    /      )
2
  0.5 0.9848/1.0101  16 654.83/16 808.4 2 

 0.4786 

 

The specified fill loss coefficient 

     1.851     
1.2752  

 1.0356 1.851 2.504 1.506021.2752 1.99043 1.0356 3.83021  
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The actual cooling tower fill loss coefficient relation is shown below 

         (   5
2 / 

    
     

2 / 
   

 )/(     
2 / 

    
 )  

 3.83021 (2.043752/0.96079 2.0072/1.0101)   2.029572/0.98484) 3.90828  

The expansion loss coefficient  

       (1    /   )
2
 ( 

    
/ 

   
 )     /       

2  

 [1 8 300 
4

  104.522
]
2

 (
0.98484

0.96079
) (

16 963.13

16 808.4
)
2

 0.00109 
 

Loss coefficient through the spray zone above the fill 

         [0.4   /     1](     /     )      /       
2  

 0.5[0.4 1.506/1.995  1]  0.98/0.96   16 963.13/16 808.4 2 0.67995  

The specified loss coefficient for the water distribution system 

      0.5( 
    

/ 
   

 )     /       
2  0.5 0.98/0.96  16 963.13/16 808.4 2 0.5219  

The loss coefficient for the specified type c drift eliminators based on fill 

conditions 

      27.4892[    /(          )]
 0.14247

( 
    

/ 
   

 )  
 

     /       
2
 

 

 27.4892 [
16 963.13

1.8 10 5 8 300
]
 0.14247

  0.98/0.96  16 963.13/16 808.04 2 5.47101 
 

Sum of these loss coefficients 

(                             )  
  

 0.4786 3.9082 0.0011 0.6796 0.5219 5.4710 11.07164  

The effective fill diameter 

     1.27 0.16722 ln   /     {0.043653 ln   /     0.062658  

 ln(                             )fi
  

 

 104.5 1.27 0.17 ln (
104.5

10
) {0.044 ln (

104.5

10
)  0.063} ln (11.07164)          

 

The corresponding effective frontal area is as follows 

         
2
/4     101.72/4 8123.3 m2  

The effective frontal area is approximately equal to the frontal area. This means 

that the frontal area will still be used in subsequent calculations. 

The loss coefficient due to the tower supports 

      0
                    

 

         
3

1 ( 
    

/ 
   

 )             
2 
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 01 11.6 0.8 72 
8 3002

   104.5 10 3
1  0.98/1.01  16 654.8/16 808.04 2 1.2452 

 

Tower inlet loss coefficient 

      1.5 exp 0.2  /    (           )             
2[4   /(   

2
 )]

2
 

                               
 
fi

0 0.4645 
0.2303  

  
 0.00095(

  
  

)
2

1
 

 

 1.5 exp (0.2 
104.5

10
) (

0.98484

1.0101
) (

16 654.8

16 808.04
)
2

[4 
8 300

  104.52
]
2

 

 11.0605
0 0.4645 0.02303 

104.5
10

 0.00095(
104.5
10

)
2

1 
 4.9453 

 

Rain zone loss coefficient 

    3     (
  

  
)  0.22460 0.31467       5263.04       0.775526 

 {1.4824163 exp 71.52      0.91 {0.39064 exp 0.010912      

 0.17 {2.0892        
 1.3944 

 0.14 exp  {0.8449 ln (
    

2
)  2.312  {0.3724 ln         0.7263 ln {206.757      

 2.8344 

 0.43    

 

 3 1.0008 0.001509 (
10

0.0035
)  0.22460 0.31467 1.0001 1.0101 5263.04 1.7857 

 10 5 0.775526{1.4824163exp (71.52 1.0003 0.0035) 0.91 {0.39064exp (0.010912 

 1.0003 104.5) 

 0.17   2.0892(1.0009 1.9972)
 1.3944

 0.14 exp {(0.8449ln (1.0003 104.5/2) 2.312  

 {0.3724ln (1.008 1.99) 0.7263  ln (206.757 1.000 10  2.8344  0.43    

 

 7.22370  

Transfer coefficients: 

The parameters for the rain zone transfer coefficient. The “a” coefficients as 

shown below. 

   3.061 10-6( 
  
4   9/    )

0.25
  3.061 10-6(997.844 9.89/0.07257)

0.25
=1.0000  

   998/ 
  
  998/997.87          

   73.298(g5   
3 / 

  
3   )

0.25
  73.298(9.85 0.072573/997.873 )

0.25
 1.0008  

   6.122(g   /    )
0.25

  6.122 9.8 0.07257/997.87 0.25 1.0003  

Schmidt number 

    
   

/( 
   

  )   1.7857 10
 5/(1.0101 2.2997 10 5)          

The humidity ratio of saturated air at Tw1 and diffusion coefficient at inlet 

conditions are given below 

Humidity ratio of saturated air     =  0.01950 

Diffusion coefficient    =  2.2997×10
-5  

m
2
/s 

The air vapour velocity before the fill 
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         /(       ) 1.99083 m/s  

Rain zone transfer coefficient 

       (
  

    
) (

  

  
) (

   

         
)       [

  (
         
        

)

      
]   0.90757       

 30341.04       0.37564   4.04016 {0.55 41.7215       
0.80043  

 {0.713+3.741      
-1.23456 {3.11 exp 0.15       -3.13  

 exp  {5.3759 exp(-0.2092    )}ln {0.3719×exp 0.0019055      

 0.55     

 

 12.
2.2997 10 5

1.9908 0.0035
/(

10

0.0035
)  (

84100
461.52 288.6

997.87
) 0.76870.33 

  ln (
0.01950 0.622

0.008127 0.622
)   0.0195 0.008127   0.90757 1.00 1.0101 30341.0 

 1.7857 10 5 0.37564 4.04016  {0.55 41.7215 1.0003 0.0035 0.80043} {0.713 

 3.741 1.0003 10  1.23456 {3.11exp (0.15 1.0008 1.9908) 3.13  

 exp  {5.3759(exp ( 0.2092 1.0003 10) ln {0.3719exp (0.0019 1.0003 104.5) 0.55     
 0.414382 

 

Fill transfer coefficient 

     0.25575     
 0.094  

0.6023  0.25575 2.504 1.50602 0.094 1.990430.6023  

 0.932802  

The spray zone transfer coefficient 

     0.2          
0.5  0.2 0.5 1.99043/1.50602 0.5  

 0.114963  

Overall transfer coefficient 

               0.414382 0.932802           

 1.462147  

The total Merkel (Merz + Mefi + Mesp = MeCT) number can also be calculated using the 

Merkel method as shown below 

∫
      

         

 
   

   

             

4
(
1

   
 

1

   
 

1

   
 

1

   
) 

 

The enthalpy differentials shown in the equation above are calculated at the 

following intermediate temperatures 

     
  
 0.1(       )   294.526 0.1(313.15 294.526) 296.3884    

     
  
 0.4(       )   294.526 0.4(313.15 294.526) 301.9756    

     
  
 0.6(       )   294.526 0.6(313.15 294.526) 305.7004    

        0.9            294.526 0.9(313.15 294.526) 311.2876    

Stellenbosch University  https://scholar.sun.ac.za



E-8 

 

In order to calculate the enthalpy differentials the thermophysical properties is 

calculated at their respective temperatures. This is done for Tw1. 

Thermophysical properties at Tw1    

Specific heat of air cpa1 = 1006.516  J/kg K 

Specific heat of water vapour cpv1 = 1872.466  J/kg K 

Pressure of the water vapour pvs1 = 2849.024  J/kg K 

Humidity ratio ws1 = 0.021944  J/kg K 

The corresponding enthalpy at Tw1 

                273.15     [               273.15 ]  

 1006.52 296.39 273.15  0.0219 2.5106 106 1872.466 296.3884 273.15    

 79 294.418  /kg dry air  

The enthalpy of air at Tw1 away from the film of water 

     
               

  

      
 

 12 500 
4 178.833 296.3884 294.526 

16 551.58
  36 114.729 

 

 41 998.4376  /kg dry air  

The difference between the above calculated are shown for each of the enthalpy 

differentials at their respective temperatures.  

                     

Δ    37 295.843  /kg dry air  

    48 551.6031 /kg dry air  

Δ   60 726.024  /kg dry air  

Δ   88 224.358  /kg dry air  

Substitute these values into the approximate integral and find the combined 

Merkel number for all three zones 

∫
      

         

 
   

   

             

4
(
1

   
 

1

   
 

1

   
 

1

   
) 

 

 1.4636735  

The Merkel number obtained using the Merkel method agrees with the Merkel 

number previously obtained. This means that the chosen outlet water temperature 

(Two) is correct. 

The heat rejected by the cooling tower  

   
 
    (       ) 12 500 4 178.33(313.15 294.526)   

 972 024 218.    W  

The heat absorbed by the air is shown below 
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(         )   16 520.57(94 951.920 36 114.72)  

972 024 081.2 W  

The heat released by the water and absorbed by the air corresponds well thus 

confirming that Ta5 is correct. 

With all the loss coefficients known it is possible to confirm pa5  

     
   
 1-0.00975(      /2)/    

3.5 1    {1-
  

   0.62198
}

-(                  

                        )fi(     /    )
2
/(2 

    
) 

 

 84100 1 0.00975(10 2.504/2)/288.6 
3.5 1 0.008127 ,1 

0.008127
0.008127 0.62198

-
 

 24.486  16 808.04/8300 2/(2 0.98484) 

 

 83 937.718 N/m2  

This value is similar to the one used for previous calculations. 

The temperature lapse rate above the drift eliminators as shown below  

 
   

  g(1   )/{     1.966 10
14/ 

  
   
2        (       )(    273.15)  

 exp ( 5406.1915/   )  

 

  9.8(1 0.02676)/{1056.697 
7.966 1014

83937.56 299.57192
  2.5016 106 (4192.603 1873.8) 

 (299.5719 273.15) exp ( 
5406.1915

299.5719
)  

 

  0.002091057  /m  

In order to find the pressure difference between the tower outlet and the ambient 

at the same elevation (pa6 – pa7) the Froude number and air properties must be 

known. A value for pressure at 6 must be chosen to calculate the air properties. 

This value was chosen as 82 650.58912 N/m
2
 . 

The temperature at 6 can be found by using the temperature lapse rate from 5. 

     
  
     (             )   299.5719 0.002092433 147 10 2.504 0.5   

 299.2916    

The density of the air-vapour mixture at the specified temperature and pressure. 

      1    [1 
  

   0.62198
]  

  
/(    ) 

 

  1 0.02676 [1 
0.02676

0.02676 0.62198
]  82 650.58/(287.08 299 0291  

 

 0.946941 N/m2 
 

With the temperature lapse rate of the ambient air known the temperature at 7 can 

be calculated. 

     
  
 0.00975   288.6 0.00975 147  

 287.16675    

The corresponding pressure at 7 is found to be 
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[1 
0.00975  

   
]
3.5 1    ,1 

  
   0.62198

-

 

 

 84 100 1 0.00975 
147

288.6
 

3.5 1 0.008127 {1 
0.008127

0.008127 0.62198
 

 

 

 82 654.268 N/m2 
 

With the temperature and pressure known at 7 and assuming a uniform humidity 

ratio of w1 the density of air-vapour mixture can be determined. 

      1    [1 
  

   0.62198
]  

  
/(    ) 

 

 (1 8.127 10 3) 01 8.127  
10 3

8.127 10 3 0.62198
1 82 654.268/(287.08 287.16675  

 

  0.99771 N/m2  

The Froud number is determined assuming there is no cold inflow 

    (
    

  

)
2

/  
   

 ( 
   

  
   

 )g     
 

 [
16 963.13

0.25   60.852
]
2

  0.946941 0.9977 0.9469  9.8 60.85  
 

 1.19  

The relation shown below is used to confirm the value chosen for pa6 is correct 

     
  
 [0.02   

 1.5 
0.14

   
] (

    

  

)
2

/ 
   

 
 

 82 654.268 [0.02 1.17033 1.5 
0.14

1.17033
] (

16 963   

0.25   60.852
)
2

/0.946941 
 

 82 650.581 N/m2  

The draught equation can now be solved. The LHS of the draught equation is 

found to be  

     
  
 {1 

0.00975 (   
   
2
)

   
}

3.5 1    {1 
  

   0.62198
 

 

 

 {1 
    (      

   
2
)

   
}

 

 1    {1 
  

   0.62198
}g

     

 

 {1 
0.00975  

   
}
3.5 1    ,1 

  
   0.62198

-

  (0.02   
 1.5 0.14/   ) (

    

  

)
2

/ 
   

 

 

 

       [,1 
0.00975 (10 

2.504
2

)

288.6
-

3.5 1 0.008127 ,1 
0.008127

0.008127 0.62198
-

 

 {1 0.0020924(147 10 
2.504

2
  299.5719  

 1 0.02676 ,1 
0.02676

0.02676 0.62198
-
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9.8

 287.08 0.00209
 {1 0.0098 147/288.6  

3.5 1 0.0081 ,1 
0.0081

0.0081 0.62198
-
  

 68.4  

The value on the right hand side 

    (                                         )fi .
     

   

/

2

 
 

 

 (2 
    

) 1     (       fi/2)/Ta5  
 

 1 w5 [1 
w5

w5 0.62198
]g

  Ta5   e6 (
mav5

A6

)
2

/(2ρ
av6

) 

 

 24.456 (
16 808. 4

8300
)
2

/(2 0.98484) 1 0.0020924 (147 10 
2.504

2
) 

 

 299.5719 
  1 0.02676 *1 

0.02676
0.02676 0.62198

+  
9.8

 287.08 0.0020924
 
1.01 (

16999.66
2908.111

)
2

2 0.946941
 

 

 68.4  

The LHS of the draught equation is approximately equal to the RHS thus the air-

vapour flowrate chosen is correct. 
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APPENDIX.F EXPERIMENTAL DATA 

This section contains the experimental data for the entire tests done for all 

configurations. 

Table F-1: Experimental data and results for Hsp = 300 mm, Hfi = 608 mm, Hfg = N/A, Hgg = 

N/A, Hrz = 280 mm (configuration 1) 

pa  

N/m
2
 

Lfi 

mm 

Gw 

kg/sm
2
 

Ga 

kg/sm
2
 

Me Kfdm Tnzdb 
o
C 

Tnzwb 
o
C 

Tfidb 
o
C 

Tfiwb 
o
C 

dpnz 

N/m
2
 

dpfi 

N/m
2
 

Twi 
o
C 

Two 
o
C 

101720 608 4.65 3.45 0.92 13.89 7.90 6.21 8.74 6.70 552.11 74.50 46.83 29.01 

101720 608 4.65 2.94 0.83 14.04 7.74 6.23 8.41 6.67 398.83 54.67 46.05 30.16 

101720 608 4.61 1.91 0.62 15.91 7.38 5.94 7.84 6.32 166.71 26.01 45.07 33.25 

101720 608 4.59 1.03 0.40 22.65 7.67 6.05 7.90 6.44 48.75 10.55 44.34 36.96 

101720 608 3.01 1.03 0.60 20.00 8.00 6.28 8.05 6.47 49.38 9.30 42.76 33.05 

101720 608 2.99 2.00 0.93 14.36 8.08 6.45 8.20 6.54 183.90 25.34 42.37 27.81 

101720 608 3.00 2.93 1.20 13.13 7.76 6.25 8.34 6.58 396.61 49.52 41.75 24.42 

101720 608 3.00 3.43 1.35 12.98 7.76 6.18 8.58 6.62 542.92 66.52 41.00 22.77 

101720 608 1.50 1.04 1.12 17.29 7.86 6.27 7.92 6.44 49.44 7.88 40.14 25.76 

101720 608 1.49 1.97 1.69 13.20 7.89 6.28 8.08 6.35 178.89 22.13 39.61 20.16 

101720 608 1.49 2.93 2.20 12.20 7.16 5.86 7.90 6.19 394.84 44.79 39.32 16.68 

101720 608 1.50 3.43 2.43 12.04 7.24 5.83 8.11 6.24 543.05 60.40 39.16 15.51 

101720 608 4.61 1.04 0.42 22.28 7.79 6.17 8.01 6.47 49.86 10.42 38.96 33.26 

101720 608 4.60 1.93 0.63 15.88 8.14 6.40 8.28 6.57 171.54 26.06 38.75 29.88 

101720 608 4.59 2.92 0.84 14.19 8.29 6.53 8.77 6.85 394.15 53.14 38.32 26.99 

101720 608 4.57 3.42 0.94 14.05 8.21 6.52 8.95 6.95 540.64 71.76 38.15 25.76 

101720 608 3.02 1.03 0.62 19.93 8.24 6.62 8.40 6.87 49.00 9.06 37.62 30.10 

101720 608 3.03 1.95 0.94 14.53 7.73 6.31 8.16 6.66 175.48 24.17 37.40 25.95 

101720 608 3.03 2.82 1.19 13.28 7.51 6.10 8.17 6.52 367.51 46.00 37.30 23.20 

101720 608 3.02 3.36 1.34 13.06 7.51 6.07 8.36 6.56 520.20 63.68 37.27 21.82 

101720 608 1.55 1.04 1.11 17.37 7.77 6.15 7.90 6.38 49.46 7.88 37.01 24.75 

101720 608 1.56 1.96 1.65 13.32 7.71 6.13 7.97 6.32 176.48 21.93 36.69 19.77 

101720 608 1.56 2.97 2.17 12.25 7.71 6.13 8.30 6.44 408.08 46.26 36.71 16.53 

101720 608 1.56 3.42 2.40 12.10 7.19 5.96 8.25 6.50 541.59 60.43 36.67 15.43 

101720 608 4.56 1.02 0.43 22.29 7.39 6.00 7.84 6.39 47.89 9.95 36.90 31.78 

101720 608 4.56 1.98 0.67 15.72 7.12 5.77 7.64 6.13 179.04 26.77 36.28 28.15 

101720 608 4.55 2.89 0.85 14.25 7.24 5.84 7.93 6.26 383.94 51.64 35.52 25.51 

101720 608 4.59 3.37 0.96 14.15 7.23 5.85 8.15 6.42 525.19 69.48 33.47 23.54 

101720 608 3.03 0.93 0.56 21.15 7.52 5.95 7.72 6.25 40.22 7.73 32.32 27.14 

101720 608 3.03 1.93 0.94 14.62 7.66 6.10 7.80 6.29 170.48 23.20 31.20 22.88 

101720 608 3.03 2.95 1.26 13.29 7.78 6.13 8.12 6.33 401.36 49.33 30.64 20.12 

101720 608 3.04 3.41 1.39 13.18 7.73 6.09 8.34 6.42 538.35 65.32 30.27 19.10 

101720 608 1.57 0.96 1.06 17.80 8.06 6.33 7.87 6.35 42.84 6.85 29.44 21.69 
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pa  

N/m
2
 

Lfi 

mm 

Gw 

kg/sm
2
 

Ga 

kg/sm
2
 

Me Kfdm Tnzdb 
o
C 

Tnzwb 
o
C 

Tfidb 
o
C 

Tfiwb 
o
C 

dpnz 

N/m
2
 

dpfi 

N/m
2
 

Twi 
o
C 

Two 
o
C 

101720 608 1.57 1.97 1.69 13.35 8.11 6.23 8.08 6.17 177.66 21.76 28.87 17.21 

101720 608 1.59 2.88 2.15 12.43 7.97 6.25 8.38 6.40 381.54 43.26 28.59 14.91 

101720 608 1.58 3.41 2.39 12.25 7.85 6.21 8.61 6.54 538.33 59.84 28.33 13.91 

Table F-2: Experimental data and results for Hsp = 300 mm, Hfi = 608 mm, Hfg = N/A, Hgg = 

N/A, Hrz = 2105 mm (configuration 2) 

pa 

N/m
2
 

Lfi 

mm 

Gw 

kg/sm
2
 

Ga 

kg/sm
2
 

Me Kfdm Tnzdb 
o
C 

Tnzwb 
o
C 

Tfidb 
o
C 

Tfiwb 
o
C 

dpnz 

N/m
2
 

dpfi 

N/m
2
 

Twi 
o
C 

Two 
o
C 

100700 608 4.51 3.36 0.97 16.29 12.15 11.48 13.19 11.95 532.14 84.49 49.10 30.25 

100700 608 4.52 2.91 0.90 16.85 12.16 11.51 13.02 11.91 396.12 65.13 47.04 30.77 

100700 608 4.52 1.97 0.71 20.41 12.24 11.56 12.80 11.86 180.41 36.10 45.67 33.37 

100700 608 4.52 0.99 0.44 36.34 12.36 11.61 12.97 12.02 45.76 16.08 44.69 37.47 

100700 608 3.02 1.00 0.61 30.02 12.40 11.61 12.78 11.90 46.54 13.32 43.70 34.28 

100700 608 3.01 2.04 0.99 17.51 12.34 11.58 12.73 11.84 194.05 32.67 43.37 28.84 

100700 608 3.00 2.92 1.26 15.09 12.22 11.50 12.90 11.84 399.28 57.38 43.13 25.83 

100700 608 3.00 3.41 1.41 14.62 12.29 11.51 13.18 11.94 547.23 75.64 42.77 24.48 

100700 608 1.68 1.03 1.06 22.79 12.60 11.58 12.64 11.67 49.88 10.61 41.42 28.12 

100700 608 1.68 1.99 1.59 15.18 12.65 11.61 12.80 11.69 186.18 26.59 41.12 23.05 

100700 608 1.68 2.96 2.05 13.38 12.70 11.64 13.14 11.84 410.81 51.14 40.72 20.12 

100700 608 1.68 3.44 2.30 13.05 12.67 11.64 13.45 11.98 557.16 67.25 40.34 18.98 

100700 608 4.39 1.03 0.45 34.94 12.73 11.72 13.18 12.03 49.64 16.43 39.68 34.01 

100700 608 4.38 1.97 0.72 20.36 12.61 11.67 13.03 11.90 181.17 35.20 38.88 30.04 

100700 608 4.38 2.90 0.93 16.90 12.71 11.79 13.36 12.10 396.08 63.31 38.15 27.32 

100700 608 4.35 3.45 1.06 16.24 12.69 11.67 13.58 12.09 560.83 85.54 37.77 25.97 

100700 608 3.14 1.03 0.62 29.42 12.67 11.71 13.00 11.95 49.96 13.71 36.57 30.24 

100700 608 3.15 1.95 0.96 18.18 12.67 11.73 12.96 11.86 177.46 30.40 36.30 26.57 

100700 608 3.13 2.91 1.26 15.34 12.72 11.76 13.28 12.01 399.20 57.21 35.90 23.89 

100700 608 3.12 3.38 1.40 14.83 12.70 11.74 13.54 12.13 539.87 74.45 35.57 22.82 

100700 608 1.57 0.98 1.12 23.03 12.78 11.86 12.85 11.89 45.67 9.65 34.78 25.26 

100700 608 1.57 1.98 1.73 15.03 12.70 11.81 12.92 11.87 183.92 25.63 34.55 20.88 

100700 608 1.57 2.94 2.23 13.28 12.74 11.76 13.27 11.98 406.20 49.61 34.39 18.47 

100700 608 1.56 3.43 2.50 12.96 12.82 11.77 13.59 12.07 554.66 65.70 34.00 17.49 

100700 608 4.39 1.02 0.43 34.86 12.80 11.81 13.20 12.10 49.21 15.89 33.13 29.45 

100700 608 4.38 1.94 0.71 20.52 12.81 11.76 13.15 11.95 175.51 33.69 32.82 26.76 

100700 608 4.37 2.90 0.94 16.95 12.81 11.71 13.38 11.97 394.76 62.21 32.44 24.64 

100700 608 4.37 3.42 1.07 16.31 12.91 11.74 13.67 12.09 550.56 83.03 32.08 23.60 

100700 608 3.09 1.03 0.63 28.90 13.04 11.78 13.14 11.91 49.55 13.15 31.37 26.83 

100700 608 3.08 1.99 1.00 17.78 13.11 11.84 13.22 11.90 185.78 30.62 31.02 23.79 

100700 608 3.08 2.96 1.32 15.20 13.10 11.84 13.58 12.06 413.75 57.97 30.93 21.76 

100700 608 3.09 3.35 1.43 14.83 13.13 11.85 13.81 12.14 529.81 72.15 30.70 21.08 

Stellenbosch University  https://scholar.sun.ac.za



F-3 

 

 

Table F-3: Experimental data and results for Hsp = 300 mm, Hfi = 608 mm, Hfg = 200 mm, Hgg 

= N/A, Hrz = 1905 mm (configuration 3) 

pa 

N/m
2
 

Lfi 

mm 

Gw 

kg/sm
2
 

Ga 

kg/sm
2
 

Me Kfdm Tnzdb 
o
C 

Tnzwb 
o
C 

Tfidb 
o
C 

Tfiwb 
o
C 

dpnz 

N/m
2
 

dpfi 

N/m
2
 

Twi 
o
C 

Two 
o
C 

101920 608 1.60 1.95 1.75 16.36 7.32 6.30 7.61 6.48 172.88 28.15 53.47 22.49 

101920 608 3.06 1.98 1.04 19.76 7.62 6.53 7.89 6.70 178.17 35.39 54.10 30.52 

101920 608 4.40 1.97 0.76 22.64 7.58 6.56 7.98 6.82 175.45 40.61 54.28 35.04 

101920 608 1.58 2.00 1.81 19.84 7.63 6.50 7.91 6.62 180.93 28.88 52.80 22.00 

101920 608 1.57 1.08 1.31 32.52 8.01 6.67 7.95 6.68 52.98 12.58 52.33 27.96 

101920 608 1.56 1.94 1.73 19.58 7.54 6.42 7.90 6.59 170.47 27.57 51.30 22.30 

101920 608 1.58 2.91 2.22 16.73 7.01 6.06 7.77 6.41 385.35 52.55 50.53 18.33 

101920 608 1.58 3.44 2.60 16.20 6.87 5.97 7.86 6.45 539.16 70.03 49.83 16.29 

101920 608 1.58 1.98 1.81 19.59 7.33 6.23 7.82 6.57 177.96 28.39 48.72 21.51 

 

Table F-4: Experimental data and results for Hsp = 300 mm, Hfi = 608 mm, Hfg = 300 mm, Hgg 

= N/A, Hrz = 1905 mm (configuration 4) 

pa 

N/m
2
 

Lfi 

mm 

Gw 

kg/sm
2
 

Ga 

kg/sm
2
 

Me Kfdm Tnzdb 
o
C 

Tnzwb 
o
C 

Tfidb 
o
C 

Tfiwb 
o
C 

dpnz 

N/m
2
 

dpfi 

N/m
2
 

Twi 
o
C 

Two 
o
C 

101800 608 1.56 2.03 1.71 16.76 8.27 7.37 8.52 7.46 187.63 29.22 48.60 22.12 

101800 608 3.00 2.01 1.08 20.41 8.20 7.40 8.51 7.52 184.42 35.47 49.29 29.12 

101800 608 4.41 2.00 0.79 23.41 8.35 7.44 8.65 7.60 181.65 41.12 49.55 33.42 

101800 608 3.08 2.02 1.07 19.58 7.84 6.99 8.26 7.24 184.81 36.05 49.31 29.24 

101800 608 3.09 1.06 0.72 31.34 7.91 7.01 8.11 7.21 51.30 16.81 49.24 35.33 

101800 608 3.09 1.96 1.02 19.44 7.91 7.07 8.27 7.38 175.17 35.05 49.22 29.78 

101800 608 3.08 2.98 1.37 16.55 8.21 7.35 8.87 7.73 406.37 64.99 48.78 25.39 

101800 608 3.08 3.42 1.51 16.08 8.05 7.24 9.01 7.76 537.39 82.05 48.35 23.93 

101800 608 3.09 2.01 1.10 19.44 8.47 7.45 8.98 7.78 184.42 35.68 44.26 27.78 

 

Table F-5: Experimental data and results for Hsp = 300 mm, Hfi = 608 mm, Hfg = 400 mm, Hgg 

= N/A, Hrz = 2105 mm (configuration 5) 

pa 

N/m
2
 

Lfi 

mm 

Gw 

kg/sm
2
 

Ga 

kg/sm
2
 

Me Kfdm Tnzdb 
o
C 

Tnzwb 
o
C 

Tfidb 
o
C 

Tfiwb 
o
C 

dpnz 

N/m
2
 

dpfi 

N/m
2
 

Twi 
o
C 

Two 
o
C 

101130 608 4.46 0.97 0.52 26.54 5.29 4.18 5.99 4.71 43.52 10.72 38.03 23.34 

101130 608 4.48 1.99 0.82 17.25 6.20 4.79 6.59 5.05 166.28 27.32 44.23 20.30 

101130 608 4.50 2.85 1.03 14.60 6.38 4.90 7.05 5.38 385.50 52.91 43.64 16.41 

100700 608 1.59 1.03 1.18 21.99 13.12 11.88 13.10 11.88 50.10 10.03 30.33 22.95 

100700 608 1.58 1.92 1.72 15.21 13.13 11.96 13.23 11.98 173.64 24.26 30.11 19.76 

100700 608 1.58 2.97 2.25 13.30 13.15 12.03 13.56 12.15 415.82 50.41 29.96 17.62 

100700 608 1.58 3.41 2.50 13.01 13.21 12.10 13.97 12.38 548.60 64.80 29.76 16.99 
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pa 

N/m
2
 

Lfi 

mm 

Gw 

kg/sm
2
 

Ga 

kg/sm
2
 

Me Kfdm Tnzdb 
o
C 

Tnzwb 
o
C 

Tfidb 
o
C 

Tfiwb 
o
C 

dpnz 

N/m
2
 

dpfi 

N/m
2
 

Twi 
o
C 

Two 
o
C 

101130 608 4.53 3.42 1.17 14.04 6.23 4.82 7.16 5.41 532.79 69.82 43.37 15.04 

101130 608 3.21 0.99 0.69 37.07 6.24 4.91 6.22 4.98 44.49 16.13 47.57 35.16 

101130 608 3.22 1.94 1.04 21.23 6.04 4.84 6.32 5.01 171.40 35.82 47.14 28.86 

101130 608 3.22 2.88 1.35 17.34 5.91 4.72 6.41 5.05 379.03 63.90 46.77 24.76 

101130 608 3.21 3.43 1.52 16.45 6.14 4.89 6.76 5.24 537.79 85.22 46.42 22.90 

101130 608 1.56 1.04 1.34 43.98 5.70 4.54 5.85 4.63 43.37 19.09 49.91 39.27 

101130 608 1.57 1.91 1.83 23.46 5.47 4.42 5.87 4.60 180.24 42.75 50.66 33.14 

101130 608 1.57 2.90 2.40 19.24 5.30 4.27 5.86 4.72 368.45 71.33 52.49 29.95 

101130 608 1.56 3.41 2.64 18.08 5.09 4.23 5.90 5.40 533.65 96.67 53.52 28.25 

101130 608 4.37 1.06 0.53 25.79 6.26 4.85 6.29 4.99 49.28 12.04 45.12 26.05 

101130 608 4.37 1.97 0.83 16.83 4.89 4.00 5.90 4.59 169.19 26.73 37.57 17.54 

101130 608 4.37 2.90 1.08 14.45 5.42 4.24 6.33 4.88 380.91 51.07 37.03 14.19 

101130 608 4.35 3.38 1.20 13.90 5.56 4.37 6.75 5.13 531.05 68.03 36.77 13.08 

101130 608 3.18 0.97 0.71 37.72 6.22 4.80 6.58 5.08 42.64 15.30 40.26 31.44 

101130 608 3.17 2.03 1.14 20.66 5.50 4.39 6.13 4.94 186.07 36.97 39.49 25.44 

101130 608 3.17 2.85 1.41 17.48 5.25 4.24 6.06 4.71 369.01 61.48 39.07 22.36 

101130 608 3.17 3.42 1.58 16.55 4.89 4.01 6.15 4.71 533.37 83.60 38.63 20.64 

101130 608 1.41 0.98 1.41 41.53 6.45 4.94 6.78 5.20 48.32 19.44 42.87 34.87 

101130 608 1.40 1.93 2.04 23.71 6.39 4.96 6.85 5.27 176.08 40.68 42.02 29.82 

101130 608 1.40 2.89 2.64 19.19 6.27 4.90 7.02 5.51 383.42 71.07 41.61 26.44 

101130 608 1.39 3.41 2.91 18.21 6.24 4.84 7.13 5.40 523.24 91.41 41.22 24.86 

101130 608 4.36 1.07 0.59 26.97 5.37 4.23 6.02 4.66 44.59 11.06 33.09 22.10 

101130 608 4.34 2.03 0.87 17.26 5.32 4.24 6.17 4.74 167.78 26.95 32.64 17.12 

101130 608 4.34 2.95 1.12 14.62 5.30 4.21 6.30 4.76 402.33 54.23 32.57 13.99 

101130 608 4.31 3.39 1.24 14.14 5.55 4.33 6.63 5.01 532.27 69.06 32.31 12.92 

101130 608 3.17 1.00 0.78 36.59 5.51 4.31 6.33 4.81 45.29 15.52 34.31 27.54 

101130 608 3.17 1.97 1.12 21.02 5.52 4.35 6.48 4.83 176.51 35.10 34.00 23.34 

101130 608 3.17 2.95 1.46 17.31 5.42 4.26 6.49 4.91 395.05 64.23 33.77 20.33 

101130 608 3.15 3.39 1.62 16.59 5.28 4.22 6.53 4.92 524.79 81.40 33.49 19.06 

101130 608 1.53 0.99 1.31 40.12 5.80 4.50 6.62 5.02 51.70 19.66 36.19 30.27 

101130 608 1.53 1.92 1.94 23.23 5.89 4.59 6.75 5.10 186.42 41.34 35.76 26.43 

101130 608 1.54 2.97 2.50 19.08 5.98 4.66 7.02 5.31 395.82 71.61 35.47 23.72 

101130 608 1.53 3.41 2.79 18.23 5.78 4.54 7.02 5.26 526.12 90.48 35.07 22.43 
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Table F-6: Experimental data and results for Hsp = 300 mm, Hfi = 608 mm, Hfg = 400 mm, Hgg 

= 400 mm, Hrz = 1905 mm (configuration 6) 

pa 

N/m
2
 

Lfi 

mm 

Gw 

kg/sm
2
 

Ga 

kg/sm
2
 

Me Kfdm Tnzdb 
o
C 

Tnzwb 
o
C 

Tfidb 
o
C 

Tfiwb 
o
C 

dpnz 

N/m
2
 

dpfi 

N/m
2
 

Twi 
o
C 

Two 
o
C 

100540 608 1.64 2.02 1.78 17.83 11.08 10.30 11.16 10.49 190.25 32.05 42.53 22.09 

100540 608 3.14 2.00 1.14 21.86 11.46 10.54 11.16 10.70 186.82 39.26 42.02 27.65 

100540 608 4.33 1.98 0.89 24.89 11.57 10.56 11.39 10.70 183.74 44.10 40.73 29.86 

100540 608 3.09 1.99 1.18 21.84 11.68 10.67 11.52 10.83 184.41 38.49 40.09 26.83 

100540 608 3.09 1.00 0.82 38.47 11.57 10.54 11.45 10.77 46.65 17.03 39.64 31.26 

100540 608 3.07 1.95 1.18 22.11 11.52 10.49 11.51 10.73 176.70 37.28 39.38 26.61 

100540 608 3.08 2.90 1.50 18.21 11.11 10.22 11.38 10.58 395.03 68.00 39.09 23.51 

100540 608 3.09 3.39 1.66 17.44 11.09 10.16 11.37 10.61 540.68 88.56 38.81 22.22 

100540 608 3.06 1.99 1.25 21.75 11.44 10.40 11.43 10.78 185.27 38.32 37.95 25.71 

 

Table F-7: Experimental data and results for Hsp = 300 mm, Hfi = 608 mm, Hfg = 400 mm, Hgg 

= 800 mm, Hrz = 1905 mm (configuration 7) 

pa 

N/m
2
 

Lfi 

mm 

Gw 

kg/sm
2
 

Ga 

kg/sm
2
 

Me Kfdm Tnzdb 
o
C 

Tnzwb 
o
C 

Tfidb 
o
C 

Tfiwb 
o
C 

dpnz 

N/m
2
 

dpfi 

N/m
2
 

Twi 
o
C 

Two 
o
C 

100540 608 1.53 1.96 2.04 17.91 11.40 10.44 11.40 10.74 178.84 29.88 36.41 19.86 

100540 608 3.07 1.94 1.23 22.21 11.45 10.48 11.32 10.75 176.30 37.12 36.80 25.40 

100540 608 4.32 1.93 0.90 25.58 11.69 10.67 11.53 10.80 173.98 42.30 36.41 27.87 

100540 608 3.08 1.94 1.19 22.27 11.80 10.65 11.65 10.84 176.42 37.15 36.29 25.37 

100540 608 3.07 1.01 0.84 38.34 11.78 10.58 11.63 10.83 47.64 17.12 35.98 29.06 

100540 608 3.06 2.00 1.11 22.09 11.83 10.72 11.69 10.85 187.15 38.93 35.82 25.36 

100540 608 3.06 2.96 1.50 18.23 11.82 10.69 11.90 10.94 410.51 69.96 35.80 22.47 

100540 608 3.06 3.42 1.64 17.53 12.01 10.81 12.00 11.26 552.35 90.00 35.47 21.44 

100540 608 3.07 1.96 1.23 22.08 12.16 10.92 12.10 11.22 180.24 37.46 34.76 24.65 

 

Table F-8: Experimental data and results for Hsp = 300 mm, Hfi = 608 mm, Hfg = N/A, Hgg = 

N/A, Hrz = 4168 mm (configuration 8) 

pa 

N/m
2
 

 Lfi 

mm 

Gw 

kg/sm
2
 

Ga 

kg/sm
2
 

Me Kfdm Tnzdb 
o
C 

Tnzwb 
o
C 

Tfidb 
o
C 

Tfiwb 
o
C 

dpnz 

N/m
2
 

dpfi 

N/m
2
 

Twi 
o
C 

Two 
o
C 

101480 608 1.62 2.02 1.54 17.59 6.02 4.36 6.16 4.84 185.31 31.00 45.85 21.90 

101480 608 3.04 2.00 1.03 22.28 6.34 4.60 5.94 4.80 180.63 39.27 46.73 28.35 

101480 608 4.55 2.02 0.77 26.80 6.62 4.89 7.45 5.97 184.76 49.17 47.19 32.56 

101480 608 2.99 2.04 1.08 21.68 6.50 4.92 6.59 5.19 188.63 39.93 46.78 27.85 

101480 608 3.00 1.06 0.73 40.57 6.59 4.87 6.62 5.23 50.86 20.11 46.40 33.66 

101480 608 2.98 2.02 1.06 22.20 6.41 4.79 6.62 5.20 184.32 39.89 46.27 27.90 

101480 608 2.98 3.02 1.37 17.29 6.11 4.62 6.61 5.11 413.92 68.91 46.02 23.92 

101480 608 2.98 3.44 1.57 16.27 6.48 4.84 6.95 5.34 540.58 84.24 45.97 22.25 

101480 608 3.00 2.02 1.09 21.93 6.16 4.57 6.50 5.23 185.42 39.48 44.40 27.14 
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Table F-9: Experimental data and results for Hsp = 300 mm, Hfi = 608 mm, Hfg = 400, Hgg = 

N/A, Hrz = 4168 mm (configuration 9) 

pa 

N/m
2
 

Lfi 

mm 

Gw 

kg/sm
2
 

Ga 

kg/sm
2
 

Me Kfdm Tnzdb 
o
C 

Tnzwb 
o
C 

Tfidb 
o
C 

Tfiwb 
o
C 

dpnz 

N/m
2
 

dpfi 

N/m
2
 

Twi 
o
C 

Two 
o
C 

101480 608 1.40 2.05 2.33 18.07 6.75 5.18 5.96 5.18 190.24 32.15 38.27 16.77 

101480 608 2.97 2.02 1.31 23.99 6.31 4.94 6.08 5.13 185.30 42.78 40.65 24.84 

101480 608 4.59 2.00 0.85 30.11 6.49 5.00 6.90 6.01 181.18 52.56 38.43 28.36 

101480 608 2.97 1.97 1.26 24.71 7.08 5.35 6.81 5.56 176.96 41.45 36.29 23.69 

101480 608 2.96 1.05 0.92 46.64 7.11 5.41 6.84 5.60 50.57 22.24 35.90 27.70 

101480 608 2.96 2.01 1.24 24.43 7.35 5.55 7.14 5.71 184.25 42.57 35.95 23.57 

101480 608 2.96 2.96 1.57 18.86 7.60 5.68 7.44 5.80 400.79 70.82 35.70 20.56 

101480 608 2.95 3.42 1.81 17.52 8.03 5.82 7.81 6.09 536.62 87.58 35.38 19.10 

101480 608 2.95 1.95 1.31 24.65 8.29 6.10 8.40 6.60 174.42 40.56 34.66 23.13 

 

Table F-10: Experimental data and results for Hsp = 300 mm, Hfi = 608 mm, Hfg = 400, Hgg = 

800, Hrz = 4168 mm (configuration 10) 

pa 

N/m
2
 

Lfi 

mm 

Gw 

kg/sm
2
 

Ga 

kg/sm
2
 

Me Kfdm Tnzdb 
o
C 

Tnzwb 
o
C 

Tfidb 
o
C 

Tfiwb 
o
C 

dpnz 

N/m
2
 

dpfi 

N/m
2
 

Twi 
o
C 

Two 
o
C 

100520 608 1.49 1.97 2.19 21.06 13.81 9.37 13.31 9.41 182.32 35.98 42.18 19.79 

100520 608 2.95 1.95 1.36 27.70 13.27 9.35 13.41 9.44 178.60 47.58 42.88 26.33 

100520 608 4.41 1.98 0.92 32.42 13.73 9.24 13.27 9.34 173.27 57.77 43.22 30.51 

100520 608 3.01 2.00 1.33 27.46 14.22 9.49 13.45 9.43 189.13 49.78 43.11 26.51 

100520 608 2.99 1.05 0.89 54.08 14.40 9.61 13.49 9.60 52.10 27.05 43.10 31.99 

100520 608 3.00 2.01 1.29 27.46 14.51 9.89 13.78 9.59 190.86 50.16 43.07 26.65 

100520 608 2.98 2.98 1.75 20.72 14.55 9.75 13.97 9.77 419.97 82.32 43.03 22.80 

100520 608 2.97 3.39 1.94 19.39 14.44 9.57 14.62 9.74 546.87 99.80 42.96 21.50 

100520 608 2.97 1.99 1.38 27.35 14.55 9.74 14.14 9.71 186.56 48.93 42.97 26.29 

 

Table F-11: Experimental data and results for Hsp = 300 mm, Hfi = 608 mm, Hfg = 400-450, 

Hgg = N/A, Hrz = 4168 mm (configuration 11) 

pa 

N/m
2
 

Lfi 

mm 

Gw 

kg/sm
2
 

Ga 

kg/sm
2
 

Me Kfdm Tnzdb 
o
C 

Tnzwb 
o
C 

Tfidb 
o
C 

Tfiwb 
o
C 

dpnz 

N/m
2
 

dpfi 

N/m
2
 

Twi 
o
C 

Two 
o
C 

100520 608 1.38 2.02 2.16 17.64 14.35 9.81 13.79 9.73 192.99 31.65 40.59 19.37 

100520 608 3.11 2.00 1.19 24.16 14.33 9.89 13.74 9.82 188.22 43.49 42.32 27.15 

100520 608 4.40 1.98 0.89 28.82 14.38 9.89 14.01 9.69 184.94 51.28 41.88 30.12 

100520 608 3.07 2.01 1.16 24.16 14.36 9.82 13.89 9.61 189.49 43.28 39.26 26.14 

100520 608 3.05 0.96 0.78 50.64 14.39 9.88 13.59 9.65 44.02 20.92 37.99 30.32 

100520 608 3.06 1.96 1.16 24.70 14.29 9.75 13.80 9.50 180.25 41.83 36.99 25.34 

100520 608 3.05 2.91 1.54 18.85 14.31 9.68 14.13 9.52 401.44 70.28 35.91 21.94 
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pa 

N/m
2
 

Lfi 

mm 

Gw 

kg/sm
2
 

Ga 

kg/sm
2
 

Me Kfdm Tnzdb 
o
C 

Tnzwb 
o
C 

Tfidb 
o
C 

Tfiwb 
o
C 

dpnz 

N/m
2
 

dpfi 

N/m
2
 

Twi 
o
C 

Two 
o
C 

100520 608 3.05 3.45 1.73 17.41 14.45 9.79 14.51 9.69 565.07 90.76 35.44 20.62 

100520 608 3.08 1.93 1.25 24.79 14.41 9.71 14.01 9.48 175.64 40.71 34.73 24.23 
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