Novel Energy Systems for Distributed and Mobile Power Generation

William E. Lear

University of Florida Department of Mechanical & Aerospace Engineering Gainesville, FL

Department of

Mechanical & Aerospace Engineering

UF Energy & Gas Dynamics Laboratory

May 23, 2011

Outline

- Semi-closed cycle description
 - Use in distributed generation
 - System benefits and challenges
 - Analytical and experimental results
 - Discussion and Conclusions

DMFC introduction and system description

- Advanced architecture
- Application focus
- Status and challenges

May 23, 2011

What Do We Want from a Power System? > Efficiency, compactness, low cost...

> We really want a "best friend"

- Helps you be comfortable
- Doesn't intrude on your space
- Anticipates your needs
- Is there when the chips are down
- Doesn't ask for money

How Does Current System Do?

Comfort from major appliances

- Need electricity from grid, gas from pipe, water from pipe
- Disruptions unless all distribution systems work vulnerable
- Intrudes on our space a little
 - Emissions
 - Transmission lines
 - Geopolitics (non-renewable fuels)
 - Local maintenance
- Anticipates needs well except transmission lines
- Displays character flaws when chips are down
 - Hurricanes
 - Homeland security
- Sneaky expensive

Disaster Infrastructure?

May 23, 2011

Distributed Energy

 Smaller engines installed near loads
CCHP - local cooling, heating, power
Efficiency not bad

 Include cooling (how?)

Local transmission, robustness, process heat/cooling

Disadvantages: Cost, space, noise (esp. Diesel), maintenance...don't run continuously

May 23, 2011

Waste Heat Cooling Potential

How cold can State 2 be?

- Ideal gas, reversible process, isobaric, zero work
- 1st & 2nd Laws, Gibbs eqn:

$$\dot{Q} = \dot{m}(h_2 - h_1)$$
$$\frac{\dot{Q}}{T_o} \le \dot{m}(s_2 - s_1)$$

$$s_2 - s_1 = C_p \ln\left(\frac{T_2}{T_1}\right)$$

May 23, 2011

Cooling Potential -Results

May 23, 2011

Gas Turbine Recuperation

Low pressure ratio

- Typically small engines
- Centrifugal compressor, but not necessarily

> Flat efficiency curve

- Desire high combustor inlet T
 - T ds = δQ
 - High T gives small ds
 - High p ratio unnecessary

May 23, 2011

HPRTE Advantages

- Increased efficiency/high part-load efficiency
 - "Inlet" temperature low
- Increased specific power and compactness
- Ultra-low emissions
- Low intake filtration, exhaust handling
- Small lapse rate with temperature
- Water extraction (mostly with VARS)
 - Load leveling
 - Emergency drinking water
 - Ice
 - Couple to steam gasification

System Benefits of PoWER Distributed Energy

- Complete local service
 - Power, refrigeration, fresh water, heat
 - Normal mode:
 - AC load, use water for peaking
 - Design for max efficiency or AC/power blend
 - Controlled by utility to follow loads
 - Efficiency & emissions warrant high usage
 - Emergency mode:
 - Local loads met, decreasing widespread impact
 - Switch to icemaking
- Compactness, decreased siting requirements
- Life-cycle costs competitive

Flameless Combustion

Multiple Definitions in literature

- Absence of broadband luminosity
- Reaction zone uniformity

> Implementation

- Low heating value fuel
- Dilute fuel with products (cooled)
- Dilute oxidizer stream
- > Advantages
 - Low emissions
 - Fuel flexibility

Flameless Combustion

Fuel Flexibility/Emissions

Flameless combustion regime

- Low luminosity (neglegible soot)
- Flame uniformity
- > Flame chemistry
 - Damkohler number order unity
 - Oxidation reaction distributed
 - Limited pyrolysis due to oxidation radicals

High Recirculation Combustion Facility

PoWER System (...Continued)

Semi-Closed Cycle Engines and Flameless Combustion

- More Uniform Combustor Conditions
- Flatter Efficiency Profiles
- Fuel Flexibility
- Lower Flame Temperatures
- Lower NOx Emissions
- Lower Flame Luminosities

Suitable for distributed energy systems

Part-Power Efficiency

•Design-point efficiency comparable to or better than conventional recuperated engine

•Issues include sensitivity to intercooler effectiveness and pressure drop

•Throttling to part-power via turbo wastegate or variable geometry

•Leaves core engine at design point over most of power band

May 23, 2011

Life-Cycle Costs

Our studies (MS thesis) show cost advantage over conventional microturbine for distributed generation

Boost of 4:1 increases power density of high temperature components by an order of magnitude Additional components (turbo, HX) relatively inexpensive

Part-load efficiency advantage reduces fuel costs

Result: Several percent cost savings typical

Demonstration Plant

May 23, 2011

PoWER Demonstrator

May 23, 2011

Potential Applications

- Stationary vs Transportation
- Military vs Civilian
- Combined Cycle vs Simple Cycle

Focus: stationary, small, distributed generation, multi-fuel, dual-use

May 23, 2011