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What Do We Want from aWhat Do We Want from a
Power System?Power System?

 Efficiency, compactness, low costEfficiency, compactness, low cost……

 We really want a We really want a ““best friendbest friend””
 Helps you be comfortableHelps you be comfortable
 DoesnDoesn’’t intrude on your spacet intrude on your space
 Anticipates your needsAnticipates your needs
 Is there when the chips are downIs there when the chips are down
 DoesnDoesn’’t ask for moneyt ask for money



May 23, 2011May 23, 2011 Univ. StellenboschUniv. Stellenbosch

How Does Current System Do?How Does Current System Do?
 Comfort from major appliancesComfort from major appliances

 Need electricity from grid, gas from pipe, water from pipeNeed electricity from grid, gas from pipe, water from pipe
 Disruptions unless all distribution systems work - vulnerableDisruptions unless all distribution systems work - vulnerable

 Intrudes on our space a littleIntrudes on our space a little
 EmissionsEmissions
 Transmission linesTransmission lines
 Geopolitics (non-renewable fuels)Geopolitics (non-renewable fuels)
 Local maintenanceLocal maintenance

 Anticipates needs well - except transmission linesAnticipates needs well - except transmission lines
 Displays character flaws when chips are downDisplays character flaws when chips are down

 HurricanesHurricanes
 Homeland securityHomeland security

 Sneaky expensiveSneaky expensive
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Disaster Infrastructure?Disaster Infrastructure?
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Distributed EnergyDistributed Energy
 Smaller enginesSmaller engines

installed near loadsinstalled near loads
 CCHP - local cooling,CCHP - local cooling,

heating, powerheating, power
 Efficiency not badEfficiency not bad

 Include cooling (how?)Include cooling (how?)
 Local transmission,Local transmission,

robustness, processrobustness, process
heat/coolingheat/cooling

 Disadvantages: Cost, space, noise (Disadvantages: Cost, space, noise (espesp..
Diesel), maintenanceDiesel), maintenance……dondon’’t run continuouslyt run continuously
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Waste Heat Cooling PotentialWaste Heat Cooling Potential
 How cold can State 2 be?How cold can State 2 be?
 Ideal gas, reversibleIdeal gas, reversible

process, isobaric, zeroprocess, isobaric, zero
workwork

 11stst & 2 & 2ndnd Laws, Gibbs Laws, Gibbs
eqneqn::
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Cooling Potential -Cooling Potential -
ResultsResults

VARS Cooling Potential
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Gas Turbine RecuperationGas Turbine Recuperation
 Low pressure ratioLow pressure ratio

 Typically smallTypically small
enginesengines

 CentrifugalCentrifugal
compressor, but notcompressor, but not
necessarilynecessarily

 Flat efficiency curveFlat efficiency curve
 Desire highDesire high

combustor inlet Tcombustor inlet T
    T    T ds ds = = δδQQ
 High T gives small High T gives small dsds
 High p ratioHigh p ratio

unnecessaryunnecessary
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Power, Water Extraction andPower, Water Extraction and
Refrigeration (PoWER) SystemRefrigeration (PoWER) System
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HPRTE Advantages

• Increased efficiency/high part-load efficiency
• “Inlet” temperature low

• Increased specific power and compactness
• Ultra-low emissions
• Low intake filtration, exhaust handling
• Small lapse rate with temperature
• Water extraction (mostly with VARS)

• Load leveling
• Emergency drinking water
• Ice
• Couple to steam gasification
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System Benefits of PoWERSystem Benefits of PoWER
Distributed EnergyDistributed Energy

• Complete local service
• Power, refrigeration, fresh water, heat
• Normal mode:

• AC load, use water for peaking
• Design for max efficiency or AC/power blend
• Controlled by utility to follow loads
• Efficiency & emissions warrant high usage

• Emergency mode:
• Local loads met, decreasing widespread impact
• Switch to icemaking

• Compactness, decreased siting requirements
• Life-cycle costs competitive
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Flameless CombustionFlameless Combustion
 Multiple Definitions in literatureMultiple Definitions in literature

 Absence of broadband luminosityAbsence of broadband luminosity
 Reaction zone uniformityReaction zone uniformity

 ImplementationImplementation
 Low heating value fuelLow heating value fuel
 Dilute fuel with products (cooled)Dilute fuel with products (cooled)
 Dilute oxidizer streamDilute oxidizer stream

 AdvantagesAdvantages
 Low emissionsLow emissions
 Fuel flexibilityFuel flexibility
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Flameless CombustionFlameless Combustion
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Fuel Flexibility/EmissionsFuel Flexibility/Emissions
 Flameless combustion regime

• Low luminosity (neglegible soot)
• Flame uniformity

 Flame chemistry
• Damkohler number order unity
• Oxidation reaction distributed
• Limited pyrolysis due to oxidation

radicals



High Recirculation Combustion Facility 
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PoWER System (PoWER System (……Continued)Continued)

 Semi-Closed Cycle Engines and FlamelessSemi-Closed Cycle Engines and Flameless
CombustionCombustion
 More Uniform Combustor ConditionsMore Uniform Combustor Conditions
 Flatter Efficiency ProfilesFlatter Efficiency Profiles
 Fuel FlexibilityFuel Flexibility
 Lower Flame TemperaturesLower Flame Temperatures
 Lower NOx EmissionsLower NOx Emissions
 Lower Flame LuminositiesLower Flame Luminosities

 Suitable for distributed energy systemsSuitable for distributed energy systems



May 23, 2011May 23, 2011 Univ. StellenboschUniv. Stellenbosch

Part-Power EfficiencyPart-Power Efficiency

•Design-point efficiency comparable to or
better than conventional recuperated engine

•Issues include sensitivity to intercooler
effectiveness and pressure drop

•Throttling to part-power via turbo wastegate or
variable geometry

•Leaves core engine at design point over most
of power band
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Life-Cycle CostsLife-Cycle Costs

Our studies (MS thesis) show cost advantage over conventional
microturbine for distributed generation

Boost of 4:1 increases power density of high temperature components
by an order of magnitude

Additional components (turbo, HX) relatively inexpensive

Part-load efficiency advantage reduces fuel costs

Result: Several percent cost savings typical



May 23, 2011May 23, 2011 Univ. StellenboschUniv. Stellenbosch

 

Demonstration PlantDemonstration Plant
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PoWER DemonstratorPoWER Demonstrator



May 23, 2011May 23, 2011 Univ. StellenboschUniv. Stellenbosch

Potential Applications
 Stationary Stationary vs vs TransportationTransportation
 Military Military vs vs CivilianCivilian
 Combined Cycle Combined Cycle vs vs Simple CycleSimple Cycle

 Focus: stationary, small, distributedFocus: stationary, small, distributed
generation, multi-fuel, dual-usegeneration, multi-fuel, dual-use


