Novel Energy Systems for Distributed and Mobile Power Generation

William E. Lear

University of Florida Department of Mechanical & Aerospace Engineering Gainesville, FL

Department of

Mechanical & Aerospace Engineering

UF Energy & Gas Dynamics Laboratory

May 23, 2011

Advanced Direct Methanol Fuel Cell for Mobile Computing

University of North Florida and University of Florida

May 23, 2011

Objective

- Develop a DMFC power supply for mobile computing
 - Use novel passive water recycling technology
 - Enable significant simplification of DMFC systems
- > Reduce size/weight by order of magnitude

DMFC Introduction

$$CH_3OH_{(l)} + \frac{3}{2}O_2 \to CO_2 + 2H_2O_{(l)}$$

Anode: $CH_3OH + H_2O \rightarrow CO_2 + 6H^+ + 6e^-$ Cathode: $\frac{3}{2}O_2 + 6H^+ + 6e^- \rightarrow 3H_2O$

May 23, 2011

Conventional DMFC System

Simplified DMFC System

May 23, 2011

Passive Water Recovery

Univ. Stellenbosch

May 23, 2011

Impact

Baseline Membrane Electrode Assembly (MEA) provides path to system simplification and increased power and energy density, with lower system cost.

Characteristic	Units	UNF 15 W DP3 2008 Status	DOE 2010 Target	UNF Proposed 2019 System Design
Specific Power ^a	W / kg	35	100	41.5
Power Density ^a	W / L	48	100	55 .6
Energy Density	W-hr / L	250 (1 x 100ml) ^b 396 (1 x 200ml) ^b	1000	193 (1 x 100ml) 321 (1 x 200ml) 575 (3 x 200 ml)
	W-hr/kg	155 (1 x 100ml) ^b 247 (1 x 200ml) ^b	N/A	162 (1 x 100 ml) 307 (1 x 200 ml) 638 (3 x 200 ml)
Lifetime ^c	Operating Hours	1,000 hrs in single cell	5,000	2,500 Integrated System
Cost	\$ / Watt	11 (est. in volume)	<3	< 10 (est. in volume)
^a Beginning of life, 30°C, sea level, 50% R.H., excluding hybrid battery, power module alone				

^a Beginning of life, 30°C, sea level,50% R.H., excluding hybrid battery, power module alone ^b Normalized from DP3 data from 150 ml cartridge to either 100ml or 200ml for comparison purposes ^c Lifetime measured to 80% of rated power

Marked improvement on the road towards commercialization.

May 23, 2011

Component Engineering Rigs

Cooling Fan Test Stand: Used to measure the performance and efficiency of cathode fans.

 $\overline{(\bigcirc)}$

Electric Motor Dyno: Used to measure the performance and efficiency of electric motors for pumps and fans.

May 23, 2011

Anode Recirculation Pump

May 23, 2011

Methanol Injection Pump

Grey area indicates system load curve.

May 23, 2011

Cathode Reactant/Cooling Fan

Electric Power Required at DP4 Design Point

May 23, 2011

May 23, 2011

May 23, 2011

System Engineering: Brassboard (Unpackaged System)

Each brassboard has over 500 hours of operation.

May 23, 2011

System Engineering: Packaged System

System Engineering: Packaged System

System Validation Testing: Continuous Operation

Continuous Brassboard Operation

Consistent brassboard operation.

May 23, 2011

System Validation Testing: Off-State Degredation

Performance Degradation in DP4 Brassboards

Stack Current at 16 Volts, 50 C, 0.8 M at 1 hr polarization Point

Brassboard performance degradation two orders of

magnitude less with continuous operation

May 23, 2011

Questions