

ELECTRICAL & ELECTRONIC ENGINEERING

Managing peak demand and energy costs through PV and intelligent scheduling of water heaters at two schools in South Africa

Stellenbosch University

Stefan Gerber, A. Rix, M.J. Booysen REPS 2018 – 13 September 2018

Introduction

Motivation:

- Global emissions are increasing
- South Africa is coal heavy
- Many schools are underfunded and can benefit from solar intervention

South Africa's CO₂ emissions from solid fuel consumption (millions of tons); Site: Worldbank.org

Introduction

Overview:

Stellenbosch Primary (with EWHs)

Eikestad Primary (no EWHs)

- Two primary schools evaluated
- Both employ a demand-based tariff structure
- Primary objectives:
 - Reduce emissions
 - Reduce utility bill

3

Simulation Setup

Approach:

4 Configurations:

- Baseline
- Smart Scheduling EWH
- Solar intervention
- Solar and Smart Scheduling EWH intervention
- Simulate configurations using:
 - Verified Solar and EWH models
 - Using data obtained by sensors

Average daily measured energy usage for both Schools (plotted for each week)

Simulation Setup

System Simulation Diagram:

System Modelling

Solar PV simulation:

System Modelling

EWH simulation:

System Modelling

EWH Smart-Scheduling algorithm:

9

Energy and peak demand savings:

Average kWh used per day

Maximum kVA per month

Seasonality:

Max kVA for a winter's day

Max kVA for a summer's day

- Stellenbosch Primary: Base - · Solar intervention = - Solar & Smart Scheduling intervention

Simulation results for Stellenbosch Primary:

Parameter	School Baseline	With smart- scheduling intervention	With solar intervention	With solar and smart-scheduling intervention	Unit
Total Energy Usage	157.3	155.6 (1.08%)	109.2 (30.7%)	105.4 (32.7%)	MWh
Mean Daily Energy Usage	430	426	299	289	kWh
Daily peak demand [min,median,max]	[8,37,72]	[8,36,71] (2.70%)	[0,30,55] (19.1%)	[0,29,54] (21.2%)	kVA
Yearly CO₂ Emissions	117 065	115 808	81 274	78 445	kg
Percentage utility bill reduction	0	1.4	23.6	25.8	%

Simulation results for Eikestad Primary:

Parameter	School Baseline	With solar intervention	Unit
Total Energy Usage	114.8	71.8 (37.4%)	MWh
Mean Daily Energy Usage	315	197	kWh
Daily peak demand [min,median,max]	[6,31,62]	[0,25,55] (19.3%)	kVA
Yearly CO₂ Emissions	85 436	50 458	kg
Percentage utility bill reduction	0	30.13	%

Conclusion

- Interventions resulted in reductions in utility bill and emissions.
- The estimated payback period was favorable, making it viable for the schools investigated.
- Optimal battery storage can possibly lead to improved results.

Thank you

