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• Introduction
• S-CO2 Brayton Cycles
• Properties of s-CO2

• S-CO2 BC applicability to CSP
• Conclusion
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Greenhouse Gas Emissions
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Electricity Production

• The energy sector is the 
largest contributor to 
GHG emissions: 84.5%

• 94% of electricity in 
South Africa produced 
from coal

84.5%

6.8%
4.5% 4.1%

Energy Agriculture

Industry Waste
Source: USAID, 2016, GHG Emissions in SA
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Mitigation target
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Bischof-Niemz, 2017, Energy Modelling for South Africa, Latest Approaches & Results in a Rapidly Changing Energy Environment 
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Improved efficiency

• Large amounts of solar resource
• The most effective way to improve the 

CSP plant’s efficiency is through 
improvements to the power cycle 

• Efficiencies of over 50% possible in central 
receiver tower type CSP systems



8

Recuperated Recompression Cycle
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Cooling
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Specific Heat
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Specific Heat
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Cooling process



13

Cooling process

ሶ𝑄 = ሶ𝑚 𝐶𝑝 ΔT
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Compression
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Density
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Density
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Density
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Compression
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Compact turbomachinery

Wright, 2010, Operation and Analysis of a Supercritical
CO2 Brayton Cycle
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Recuperation
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Heating
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Thermal Conductivity

ℎ =
𝑁𝑢 𝑘

𝐷
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Expansion
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Temperature range

• Parabolic trough systems have 
concentration ratios of 80 and can reach 
temperatures of up to 400 °C. 

• Central receiver power plants have ratios 
of up to 600 and can reach temperatures 
up to 1000 °C (Elsaket, 2007)

• Central receiver plants preferred
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Temperature range

• Non-combustible
• No upper temperature limit 
• Non-explosive
• Chemically stable
• Inexpensive
• Abundant
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Pressure range

• Moderate pressure 
• With pressures from the critical point of 

7.38 MPa to around 20 MPa
• These pressures require sturdier 

components
• Seals and bearings
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Dry Cooling

• Dry-cooling reduces water consumption 
compared to wet cooling 

• This is important as recent water 
shortages have demonstrated the scarcity 
of this resource in South Africa
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Dry cooling

• Critical point ,31.1 °C, close to ambient 
temperature

• Must keep the inlet conditions pseudo-
critical

• Control system is important
• Dramatic changes in fluid properties near 

the critical point
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Thermal Energy Storage

• Improved storage capacity
• Lower levelized cost of energy
• Controlled input
• Lower temperatures
• Higher efficiencies than steam
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Direct heated closed loop cycle

• No use of fluids that are toxic, flammable, 
or have a high global warming potential

• Flexibility due to temperature range
• Stability in operation due to single phase
• Can place entire power cycle in the 

receiver
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Overall size of power conversion system

Steam turbine

Helium turbine

s-CO2 turbine

Source: Rochau, 2014, Commercializing the sCO2 Recompression Closed 
Brayton Cycle 
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• Large shafts to transmit torque
• Large or expensive heat exchangers
• Specialised components such as bearings 

and seals 
• Thermal stresses and fatigue failure  
• Non-linearity of properties

Wright, 2010, Operation and Analysis of a Supercritical
CO2 Brayton Cycle
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• Large shafts to transmit torque
• Large or expensive heat exchangers
• Specialised components such as bearings 

and seals 
• Thermal stresses and fatigue failure  
• Non-linearity of properties

Flamant, 2013, Design of Compact Heat Exchangers for Transfer Intensification
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• Large shafts to transmit torque
• Large or expensive heat exchangers
• Specialised components such as bearings 

and seals 
• Thermal stresses and fatigue failure  
• Non-linearity of properties



36

• Increased electricity production
• Reduced investment costs 
• Off design operation possible
• Better understanding of operation
• Quantifying the improvements
• There is still work to be done
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