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Figure: Khi Solar One
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Figure: Kathu Solar Park
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Dry-cooling systems are typically
employed:
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Figure: Natural draught
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Problem statement

@ Outlet kinetic energy lost to atmosphere
@ This is a system loss

@ Decreases the total-to-static efficiency of the fan

Figure: Induced draught air-cooled condensers (ACCs)
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@ Minimise the outlet kinetic energy loss of the M-fan
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Objective

@ Minimise the outlet kinetic energy loss of the M-fan
@ The M-fan was designed by Wilkinson et al. (2017) for CSP

application

Table: M-fan specifications

Diameter 241t (7.3152m)
Number of blades 8
Hub-tip-ratio 0.29
Rotational speed 151 rpm
Flow rate 333m3/s
Fan static pressure 116.7 Pa
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Draught equation

Draught equation:
Energy supplied = energy
dissipated
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Draught equation

Draught equation:
Energy supplied = energy
dissipated

@ Dimensionless pressure
loss/gain coefficient:

__Ap
-~ pvE/2
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Draught equation

Draught equation:
Energy supplied = energy
dissipated
@ Dimensionless pressure
loss/gain coefficient:

Ap

- pve/2

@ Induced draught ACC:

Support I
b ~J
@
ApPrs + erpVEc/2 = Apsys + KaitpVEc/2 + cerpVs /2
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@ Draught equation:

APrs + aerpVEG/2 = APsys + KaitpVig /2 + crerpVs /2
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@ Draught equation:
ApPrs + erpVEc/2 = Apsys + KaitpVec/2 + cverpVs /2

@ Pressure recovery term:

Kiec = e — cve7(Arc/A7)? — Ky
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@ Draught equation:

APrs + aerpVEG/2 = APsys + KaitpVig /2 + crerpVs /2

Aprs + Krecpvlgc/ 2 = Apsys

@ Pressure recovery term:

Kiec = e — cve7(Arc/A7)? — Ky



Pressure recovery
Draught equation: Pressure recovery term:

Aprs + KrechEC/Q = Apsys Krec = aeF—ae7(AFC/A7)2_Kdif

<+ Apsys

Pressure [Pa]

Vmax h A,DFS

y 4
T T T 1

Volume flow rate [m3/s]
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Kinetic energy factor

Pressure recovery

Kinetic energy factor: ratio of actual to mean kinetic energy through a

section
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Kinetic energy factor

Pressure recovery

Kinetic energy factor: ratio of actual to mean kinetic energy through a

section
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Pressure recovery term:

Kiec = e — aver(Apc/A7)? — Kait

@ Want A7 as large as possible
@ Avoid flow separation
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Area ratio

Pressure recovery

100

Pressure recovery term:
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Figure: Efficiency characteristic
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Pressure recovery term:

Kiec = ver — cve7(Arc/A7)? — Ky

@ Kyjs represents the total pressure
loss across the diffuser

@ Owing to viscous effects

@ Aim to keep as small as possible
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Diffuser loss coefficient

Pressure recovery

Pressure recovery term:

o
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Kreo = aer — ae7(Arc/A7)* — Kai

@
S
!

M-fan: 8 blades|

@ Kyjs represents the total pressure
loss across the diffuser

@ Owing to viscous effects
@ Aim to keep as small as possible
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Validation case: ERCOFTAC conical diffuser

@ Experiments performed by Clausen et al. (1993)
@ Swirling flow in a conical diffuser

o Total divergence angle: 20°

o Area ratio: 2.84

TweTT T doo
Honeycomb

Figure: Experimental setup (Clausen et al., (1993))
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Validation case: ERCOFTAC conical diffuser

@ Experiments performed by Clausen et al. (1993)
@ Swirling flow in a conical diffuser

o Total divergence angle: 20°

o Area ratio: 2.84

@ Swirl sufficient to avoid boundary layer separation
@ Swirl insufficient to cause recirculating core flow
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Figure: Experimental setup (Clausen et al., (1993))
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@ Meshes:

e Two-dimensional axisymmetric and three-dimensional meshes
e Outlet extension added: 10 inlet diameters long
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Meshing and boundary conditions
Validation case: ERCOFTAC conical diffuser

@ Meshes:
e Two-dimensional axisymmetric and three-dimensional meshes
@ Outlet extension added: 10 inlet diameters long
e High-Re turbulence models: 30 < y* < 100
o Low-Re turbulence models: y+ <5
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Meshing and boundary conditions
Validation case: ERCOFTAC conical diffuser

@ Meshes:
e Two-dimensional axisymmetric and three-dimensional meshes
@ Outlet extension added: 10 inlet diameters long
e High-Re turbulence models: 30 < y* < 100
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@ Boundary conditions:
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e Used turbulence viscosity of u;/u = 27.3 to calculate other inlet
turbulence quantities
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Validation case: ERCOFTAC conical diffuser

@ Meshes:
e Two-dimensional axisymmetric and three-dimensional meshes
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e High-Re turbulence models: 30 < y* < 100
o Low-Re turbulence models: y+ <5
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Meshing and boundary conditions
Validation case: ERCOFTAC conical diffuser

@ Meshes:
e Two-dimensional axisymmetric and three-dimensional meshes
@ Outlet extension added: 10 inlet diameters long
e High-Re turbulence models: 30 < y* < 100
o Low-Re turbulence models: y+ <5

@ Boundary conditions:
o Inlet: measurements of Clausen et al. (1993)
e Used turbulence viscosity of u;/u = 27.3 to calculate other inlet
turbulence quantities
e Walls: no-slip condition
e Extension: slip condition
e Outlet: total pressure with static pressure set to zero
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Tested six turbulence models:

@ High-Re models with wall functions:

@ Low-Re models with integrated boundary layers:



Turbulence models
Validation case: ERCOFTAC conical diffuser

Tested six turbulence models:
@ High-Re models with wall functions:

e Standard k— (SKE)

o Realisable k—¢ (RKE)

o SST k—w (SST)

v2—f (V2F)

@ Low-Re models with integrated boundary layers:
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Turbulence models
Validation case: ERCOFTAC conical diffuser

Tested six turbulence models:
@ High-Re models with wall functions:
e Standard k— (SKE)
o Realisable k—¢ (RKE)
o SST k—w (SST)
v2—f (V2F)
@ Low-Re models with integrated boundary layers:
o SST k—w (SSTLR)
e v2—f (V2FLR)

G. M. Bekker (STERG) Pressure recovery in an ACC REPS 2018

17/23



Turbulence models
Validation case: ERCOFTAC conical diffuser

y [mm] y [mm]

Figure: Streamwise velocity Figure: Turbulent kinetic energy
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2D axisymmetric versus 3D simulations
Validation case: ERCOFTAC conical diffuser

@ Test axisymmetric assumption
@ Used standard k— model

0.8 1.4

—— 2D axisymmetric --- 3D —— 2D axisymmetric --- 3D
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Figure: Streamwise velocity Figure: Turbulent kinetic energy
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@ Realisable k— model with wall functions
@ Two-dimensional axisymmetric mesh
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Full-scale M-fan simulations

@ Realisable k— model with wall functions

@ Two-dimensional axisymmetric mesh
@ Seven configurations to test:
@ Outlet guide vanes
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Full-scale M-fan simulations

@ Realisable k— model with wall functions

@ Two-dimensional axisymmetric mesh
@ Seven configurations to test:
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Full-scale M-fan simulations

@ Realisable k— model with wall functions

@ Two-dimensional axisymmetric mesh
@ Seven configurations to test:

@ Outlet guide vanes

@ Conical diffuser

© Conical diffuser with guide vanes at its inlet
© Conical diffuser with guide vanes at its outlet
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Full-scale M-fan simulations

@ Realisable k— model with wall functions

@ Two-dimensional axisymmetric mesh
@ Seven configurations to test:

@ Outlet guide vanes

@ Conical diffuser

© Conical diffuser with guide vanes at its inlet
© Conical diffuser with guide vanes at its outlet
© Annular diffuser
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Full-scale M-fan simulations

@ Realisable k— model with wall functions

@ Two-dimensional axisymmetric mesh

@ Seven configurations to test:
@ Outlet guide vanes
@ Conical diffuser
© Conical diffuser with guide vanes at its inlet
© Conical diffuser with guide vanes at its outlet
© Annular diffuser
@ Annular diffuser with guide vanes at its inlet
@ Annular diffuser with guide vanes at its outlet
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@ A guide vane with nine blades was designed

@ Numerically modelled with the actuator disc model
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Case 1: Outlet guide vanes

Full-scale M-fan simulations

@ A guide vane with nine blades was designed
@ Numerically modelled with the actuator disc model

@ Pressure recovered: 15.9 Pa (Kiec = 0.37)
@ 13.6 % of fan pressure rise at design flow rate
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performance

@ Diffuser length set equal to fan diameter

@ Tested different divergence angles to find best diffuser



Case 2: Conical diffuser

Full-scale M-fan simulations
@ Diffuser length set equal to fan diameter
@ Tested different divergence angles to find best diffuser

performance

25

20 sstee

@ Best angle: 260 = 20°

@ Pressure recovered: 20.0 Pa
(Krec = 0.46)

@ 17.1% of fan pressure rise at
design flow rate

Recovered pressure, Aprec [Pa]
)

0 10 20 30 40
Diffuser angle, 260 [deg]
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@ Pressure recovery term:

Kiec = aer — ave7(Arc/A7)? — Kait
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@ Pressure recovery term:
Krec = aer — arer(Arc/A7)? — Ka
@ Validation study:

e Two-dimensional axisymmetric simulations
o Realisable k— with wall functions

«0O0>» «F» «)>» « > Q>



Conclusions

@ Pressure recovery term:

Kiec = aer — ae7(Arc/A7)? — Kait

@ Validation study:
e Two-dimensional axisymmetric simulations
o Realisable k— with wall functions

@ M-fan simulations:

@ Swirl removal: 13.6 % pressure increase
e Conical diffuser with 20° divergence angle: 17.1 % pressure
increase
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