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Background

Figure: Khi Solar One
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Background
Limited water resources

Figure: Kathu Solar Park
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Background
Dry-cooling

Dry-cooling systems are typically
employed:

Natural draught
Mechanical draught

Forced draught
Induced draught

Figure: Mechanical draught
Figure: Natural draught
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Problem statement

Outlet kinetic energy lost to atmosphere
This is a system loss
Decreases the total-to-static efficiency of the fan

Figure: Induced draught air-cooled condensers (ACCs)
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Objective

Minimise the outlet kinetic energy loss of the M-fan

The M-fan was designed by Wilkinson et al. (2017) for CSP
application

Table: M-fan specifications

Diameter 24 ft (7.3152 m)
Number of blades 8
Hub-tip-ratio 0.29
Rotational speed 151 rpm
Flow rate 333 m3/s
Fan static pressure 116.7 Pa
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Draught equation

Draught equation:
Energy supplied = energy
dissipated

Dimensionless pressure
loss/gain coefficient:

K =
∆p
ρv2/2

1
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Fan

Heat exchanger

Diffuser

Support

Induced draught ACC:

∆pFs + αeFρv2
FC/2 = ∆psys + Kdifρv2

FC/2 + αe7ρv2
7/2
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Pressure recovery

Draught equation:

∆pFs + αeFρv2
FC/2 = ∆psys + Kdifρv2

FC/2 + αe7ρv2
7/2

∆pFs + Krecρv2
FC/2 = ∆psys

Pressure recovery term:

Krec = αeF − αe7(AFC/A7)2 − Kdif

G. M. Bekker (STERG) Pressure recovery in an ACC REPS 2018 9 / 23



Pressure recovery

Draught equation:

∆pFs + αeFρv2
FC/2 = ∆psys + Kdifρv2

FC/2 + αe7ρv2
7/2

∆pFs + Krecρv2
FC/2 = ∆psys

Pressure recovery term:

Krec = αeF − αe7(AFC/A7)2 − Kdif

G. M. Bekker (STERG) Pressure recovery in an ACC REPS 2018 9 / 23



Pressure recovery

Draught equation:

∆pFs + αeFρv2
FC/2 = ∆psys + Kdifρv2

FC/2 + αe7ρv2
7/2

∆pFs + Krecρv2
FC/2 = ∆psys

Pressure recovery term:

Krec = αeF − αe7(AFC/A7)2 − Kdif

G. M. Bekker (STERG) Pressure recovery in an ACC REPS 2018 9 / 23



Pressure recovery

Draught equation:

∆pFs + Krecρv2
FC/2 = ∆psys

Pressure recovery term:

Krec = αeF−αe7(AFC/A7)2−Kdif
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Kinetic energy factor
Pressure recovery

Kinetic energy factor: ratio of actual to mean kinetic energy through a
section

αeF =
1

v3
FCAFC

∫
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dA

= αeFx + αeFθ
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ρ = 1.2 kg/m3

N = 151 rpm
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Area ratio
Pressure recovery

Pressure recovery term:

Krec = αeF − αe7(AFC/A7)2 − Kdif

Want A7 as large as possible
Avoid flow separation
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Figure: Efficiency characteristic
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Diffuser loss coefficient
Pressure recovery

Pressure recovery term:

Krec = αeF − αe7(AFC/A7)2 − Kdif

Kdif represents the total pressure
loss across the diffuser
Owing to viscous effects
Aim to keep as small as possible
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Validation case: ERCOFTAC conical diffuser

Experiments performed by Clausen et al. (1993)
Swirling flow in a conical diffuser

Total divergence angle: 20◦

Area ratio: 2.84

Swirl sufficient to avoid boundary layer separation
Swirl insufficient to cause recirculating core flow

Figure: Experimental setup (Clausen et al., (1993))
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Meshing and boundary conditions
Validation case: ERCOFTAC conical diffuser

Meshes:
Two-dimensional axisymmetric and three-dimensional meshes
Outlet extension added: 10 inlet diameters long
High-Re turbulence models: 30 < y+ < 100
Low-Re turbulence models: y+ < 5

Boundary conditions:
Inlet: measurements of Clausen et al. (1993)
Used turbulence viscosity of µt/µ = 27.3 to calculate other inlet
turbulence quantities
Walls: no-slip condition
Extension: slip condition
Outlet: total pressure with static pressure set to zero
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Turbulence models
Validation case: ERCOFTAC conical diffuser

Tested six turbulence models:
High-Re models with wall functions:

Standard k–ε (SKE)
Realisable k–ε (RKE)
SST k–ω (SST)
v ′2–f (V2F)

Low-Re models with integrated boundary layers:
SST k–ω (SSTLR)
v ′2–f (V2FLR)
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Turbulence models
Validation case: ERCOFTAC conical diffuser
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2D axisymmetric versus 3D simulations
Validation case: ERCOFTAC conical diffuser

Test axisymmetric assumption
Used standard k–ε model
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Full-scale M-fan simulations

Realisable k–ε model with wall functions
Two-dimensional axisymmetric mesh

Seven configurations to test:
1 Outlet guide vanes
2 Conical diffuser
3 Conical diffuser with guide vanes at its inlet
4 Conical diffuser with guide vanes at its outlet
5 Annular diffuser
6 Annular diffuser with guide vanes at its inlet
7 Annular diffuser with guide vanes at its outlet
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Case 1: Outlet guide vanes
Full-scale M-fan simulations

A guide vane with nine blades was designed
Numerically modelled with the actuator disc model

Pressure recovered: 15.9 Pa (Krec = 0.37)
13.6 % of fan pressure rise at design flow rate
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Case 2: Conical diffuser
Full-scale M-fan simulations

Diffuser length set equal to fan diameter
Tested different divergence angles to find best diffuser
performance

Best angle: 2θ = 20◦

Pressure recovered: 20.0 Pa
(Krec = 0.46)
17.1 % of fan pressure rise at
design flow rate

0 10 20 30 40
Diffuser angle, 2θ [deg]

−5

0

5

10

15

20

25

R
ec

ov
er

ed
pr

es
su

re
,∆

p r
ec

[P
a]

G. M. Bekker (STERG) Pressure recovery in an ACC REPS 2018 22 / 23



Case 2: Conical diffuser
Full-scale M-fan simulations

Diffuser length set equal to fan diameter
Tested different divergence angles to find best diffuser
performance

Best angle: 2θ = 20◦

Pressure recovered: 20.0 Pa
(Krec = 0.46)
17.1 % of fan pressure rise at
design flow rate

0 10 20 30 40
Diffuser angle, 2θ [deg]

−5

0

5

10

15

20

25

R
ec

ov
er

ed
pr

es
su

re
,∆

p r
ec

[P
a]

G. M. Bekker (STERG) Pressure recovery in an ACC REPS 2018 22 / 23



Conclusions

Pressure recovery term:

Krec = αeF − αe7(AFC/A7)2 − Kdif

Validation study:
Two-dimensional axisymmetric simulations
Realisable k–ε with wall functions

M-fan simulations:
Swirl removal: 13.6 % pressure increase
Conical diffuser with 20◦ divergence angle: 17.1 % pressure
increase
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