Synthesis, characterization and spectral studies of copper, lead and tin dithiocarbamate complexes: Single source precursors for preparation of metal sulphide nanoparticles.

Agoro M.A (201405112)

Supervisor: Co-supervisor: Prof Edson L. Meyer Dr. Raymond T. Taziwa Dr Johannes Z Mbese

University of Fort Hare Together in Excellence

Outline

- Introduction
- Methodology
 - Synthesis
 - Characterization
- Results
 - FTIR and Un-Vis
 - NMR
 - TGA and PL
 - SEM and HRTEM
 - Conclusions
 - References
- Acknowledgements

Introduction

The energy situation

- The geometric political constrains
- Moreover, generic use of fossil fuels
- Renewable energy
- Solar energy
- PV market

ESKOM LOADSHEDDING PROBABILITY SCHEDULE

		Jan-15						Feb-15						
	Sun	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Mon	Tue	Wed	Thu	Fri	Sat
					1	2	3	1	2	- 3	- 4	5	6	7
	4	5	6	7	8	9	10	8	9	10	11	12	13	14
	11	12	13	14	15	16	17	15	16	17	18	19	20	21
	18	19	20	21	22	23	24	22	23	24	25	26	27	28
	25	26	27	28	29	- 30	31	1						
	-			Mar-15	1						Apr-15			
	Sun	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Mon	Tue	Wed	Thu	Fri	Sat
	1	2	- 3	- 4	5	6	7				1	2	3	4
	8	9	10	- 11	12	13	14	5	6	7	- 8	9	10	. 11
	15	16	17	18	19	20	21	12	13	- 14	15	16	17	18
	22	23	24	25	26	27	28	19	20	-21	22	23	24	25
1	29	30	-31					26	27	28	29	30		

Introduction

TECHNOLOGY	CAPITAL COSTS USD / kW	ENERGY COSTS		
		US cents / kWh1		
POWER GENERATION				
Bio-power from solid biomass (including co-firing and organic MSW)	800–4,500 (Global) Co-fire: 200–800 (Global)	3–22 (Global) Co-fire: 4–12 (Global)		
Bio-power from gasification	2,050–5,500 (Global)	6–24 (Global)		
Coal (Fossil Fuel)	Coal: 500–6,500	Coal: 5–7		
Geothermal power	Condensing flash: 1,900–3800	Condensing flash: 4–14		
Hydropower: Grid-based	Projects ≥20 MW: 750–2,500	Projects >20 MW: 2–8		
Ocean power: Tidal range	5,290–5,870 (Global)	21–28 (Global)		
Solar PV: Rooftop	Residential costs: 2,200 Commercial costs: 3,800	21–44 (OECD)		
Solar PV: Ground-mounted utility-scale	1,200–3,000 (Global)	11 (United States)		
Concentrating solar thermal power (CSP)	Trough 6,000–8,000 Tower: 6,000 9,000	17–37 (6 hours storage Tower: 12.5–16.4 (United States; high end of range is with storage)		

Introduction

This study focuses on synthesis of single source precursors of dithiocarbamate complexes of PbS, CuS and SnS QDs.

Methodology

Results: FTIR Analysis

Ligands

• FTIR

•n(C-N) 1507 - 1584 has revealed the thiouride band.

•n(C-S) 974 - 983 indicates that this ligands acted as bidentate chelating type.

—MO ——1.4 PH

Results: FTIR Analysis

Complexes

• FTIR

•n(C-N) 1503 - 1513 revealed the thiouride band.

•n(M-S) 416 - 625 for metals band.

•n(C-S) 973 - 1030 indicates that this ligands acted as bidentate chelating type.

Results: NMR Proton Analysis

Ligands

• ¹H NMR spectra of the ligands revealed signals of 2.8 - 4.3ppm for CH₂, RNH₂ at 9.3 - 9.9 ppm, and the solvents at 2.5 ppm, which corresponds to the protons of the ligands of DTC.

•While the signal of 6.10 - 7.6 ppm for the phenyl ring which is in line with protons of DTC.

Results: NMR Proton Analysis

Complexes

 ¹H NMR spectra of the ligands revealed signals of 3.4 – 5.10 ppm for CH₂, RNH₂ at 7.03 – 10.12 ppm, and the solvents at 2.5 ppm, which corresponds to the protons of the ligands of DTC.

•While the signal of 6.48 - 7.58 ppm for the phenyl ring which is in line with protons of DTC.

Results: NMR Carbon Analysis

Ligands

¹³C NMR spectra, for the DTC ligands. The signal around 39.25 – 39.99 ppm is due to CH2; while the signal with higher intensity was observed at 40 ppm for the NH2.

•The signal at 195 – 208 ppm is due to CS2.

Results: NMR Carbon Analysis

Complexes

•¹³C NMR spectra, for the DTC complexes. The signal around 18 – 56 ppm is due to CH2; while the signal with higher intensity was observed at 40 ppm for the NH2.

•The signal at 124 – 148 ppm is due to phenyl rings.

Results: UV-Vis

Ligands

The electronic spectra of DTC ligands revealed a band at 286 nm for both ligands as a results of intraligand $\pi \rightarrow \pi^*$ transitions located on the N–C=S group, $\pi \rightarrow \pi^*$ transition within the S–C=S group and n $\rightarrow \pi^*$ electronic transition located on the sulphur atom lone pair electron. The effect of conjugate on 1.4 PH DTC can be ascribed to the difference between the two ligands.

Results: UV-Vis

Complexes

The electronic spectra of DTC complexes revealed a band at 325 nm for Pb, 338 nm for Cu and 356 nm for Sn as a results of intraligand $\pi \rightarrow \pi^*$ transitions located on the N-C=S group, $\pi \rightarrow \pi^*$ transition within the S-C=S group.

Results: PL

Complexes

The electronic spectra of DTC complexes revealed a broad and sharp peaks at 460 nm for Pb and 462 nm for both Cu and Sn.

They are all in the Blueshift region.

Results: TGA

The TGA revealed spectra of three steps from 150 °C, 377 °C and 729 °C for Cu with a mass residue of 30 % CuS.

Derivate weight (mg/min)

-2

800

Sn also has three steps from 123 °C, 321 °C and 656 °C with mass residue of 25% SnS.

While Pb has two steps at 170 °C and 360 °C with mass residue of 36% PbS.

Results: SEM

The SEM results revealed spherical shape, some crystalline and cubic structure for the CuS.

PbS shows a large spherical with smooth surface and solid morphology, it has a decent development of crystals which show crystallinity spheres.

SnS has a smooth surface comprising of mesoporous nanostructure with small spherical nanoparticles due to agglomeration.

Results: HRTEM

The HRTEM images revealed a spherical shape and polycrystalline in the three samples.

- FTIR results have shows that the dithiocarbamate complexes and ligands are bidentate.
- The NMR results for proton and carbon confirm the present of DTC in both ligands and complexes, this correlate with the results of the IR.
- TGA decomposition of the complexes were obtain as single source precursors from the residue, which revealed a mass weight within the range of 25-30 % for the metals sulfides.
- SEM analysis has revealed a spherical nanoparticles for the metal sulfides.
- HRTEM images have revealed spherical and polycrystalline nanoparticles.
- PL analysis for the metal complexes has confirmed the presence of absorption, which is within the blue-shift region.

Acknowledgements

- God for honouring is words in Psalm 32:8.
- My supervisors.
- Department of Chemistry and Fort Hare Institute of Technology (FHIT) for giving me an opportunity to utilize their laboratory facilities.
- Acknowledging the support of :

THANK YOU ALL

