## Permanent Magnet Wind Generator Technology for Battery Charging Wind Energy Systems

#### Casper J. J. Labuschagne, Maarten J. Kamper

Electrical Machines Laboratory Dept of Electrical and Electronic Engineering Stellenbosch University



September 2018

### Outline

#### Introduction

- 2 Wind Turbine Battery Charging System
- 3 Steady-State FE Simulation Method
- Optimisation
- **5** Simulation Results
- 6 Optimisation Results
- 7 Conclusions

## Active Battery Charging System



Figure 1: Single line diagram of PM wind generator connected to active battery charging system with actively synchronous rectifier.

## Passive Battery Charging System



Figure 2: Single line diagram of PM wind generator connected to passive battery charging system with uncontrolled diode rectifier.

#### **PMSG**

- Permanent magnet synchronous generator
- Direct-drive
- Low cogging torque
- Relatively large internal synchronous inductance



Figure 3: Cross section of the radial flux outer rotor PMSG configuration with surface mounted PMs

## Passive Battery Charging System



Figure 4: Single line diagram of PM wind generator connected to passive battery charging system with uncontrolled diode rectifier.

## Passive Battery Charging System



Figure 5: Single line diagram of PM wind generator connected to passive battery charging system with uncontrolled diode rectifier.

Static FEA method is proposed to achieve maximum power point matching for a turbine-specific design using an external inductance.

## Active Battery Charging System



Figure 6: Single line diagram of PM wind generator connected to active battery charging system with actively synchronous rectifier.

# Wind Turbine Battery Charging System









#### System Requirements

#### Table 1: Wind generator operating points for passive battery charging system

|               | $n_c$     | $n_r$     |
|---------------|-----------|-----------|
| Wind speed    | 3 m/s     | 12 m/s    |
| Turbine speed | 100 r/min | 320 r/min |
| Power         | 0 kW      | 4.2 kW    |

### Steady-State FE Simulation Method

• State of the PMSG? ( $\alpha = \Delta$ )

• External Inductance L<sub>ext</sub>?

### Static FEA Iterations





### Static FEA Iterations



### Static FEA Iterations



#### External Inductance Calculation

# External Inductance $L_{ext}$

$$L_{ext} = L_1 \qquad \qquad L_{ext} = L_2 \qquad \qquad L_{ext} = L_3$$

#### External Inductance Calculation



## Static FEA method

- Design for cut-in point. (1)
- Solve for  $L_{ext} = L_1$ . (3)
- Solve for  $L_{ext} = L_2$ . (3)
- Solve for  $L_{ext} = L_3$ . (3)
- Determine actual *L<sub>ext</sub>*.
- Solve PMSG. (3)
- Evaluate final performance.

# Optimisation

#### Optimisation



Figure 9: Cross section of the double layer non-overlap winding PMSG indicating the relevant dimensions for design and optimisation. Optimisation

## Non-dominated Sorting Genetic Algorithm II

#### Performance constraints

$$\mathbf{U} = \begin{bmatrix} P_{gen} \\ \eta \\ J \end{bmatrix} = \begin{bmatrix} 4.2kW \\ \ge 90\% \\ \le 6A/mm^2 \end{bmatrix}$$

Objective function

minimise 
$$F(X) = \begin{bmatrix} M_{active}(X) \\ M_{PM}(X) \end{bmatrix}$$

# Simulation Results

# Simulation Results

- Effect of  $L_{ext}$  on power point matching
- Effect of number of poles
- Effect of generator size
- Static FEA performance

### Effect of $L_{ext}$ on Power Point Matching



Figure 10: Power matching of the 28/30 wind generator ( $G_1$  and  $G_1^*$ ) with  $L_{ext}$  a parameter.

### Effect of $L_{ext}$ on Power Point Matching



Figure 10: Power matching of the 28/30 wind generator ( $G_1$  and  $G_1^*$ ) with  $L_{ext}$  a parameter.

### Effect of $L_{ext}$ on Power Point Matching



Figure 10: Power matching of the 28/30 wind generator ( $G_1$  and  $G_1^*$ ) with  $L_{ext}$  a parameter.

|                          | $G_1$          | $G_2$          | $G_1^*$        |
|--------------------------|----------------|----------------|----------------|
| $P_g$ , kW               | 4.22           | 4.25           | 3.86           |
| $f_s$ , Hz               | 74.67          | 74.67          | 116.67         |
| Turns per winding, $N_s$ | 14             | 10             | 14             |
| $V_{rms}$                | 23.5           | 23.6           | 23.65          |
| $J$ , A/mm $^2$          | 4.67           | 3.29           | 4.37           |
| $\alpha$                 | $54.4^{\circ}$ | $54.4^{\circ}$ | $68.8^{\circ}$ |
| $\eta$ , $\%$            | 90.4           | 92.4           | 88.6           |
| $X_s$ , p.u.             | 0.58           | 0.46           | 0.83           |
| $X_{ext}$ , p.u.         | 1.88           | 1.99           | 3.59           |
| $L_{ext}$ , mH           | 2.84           | 3.06           | 3.74           |
| $X_{ext}/X_s$            | 3.26           | 4.33           | 4.32           |
| Outer Diameter, mm       | 384            | 384            | 384            |
| Axial Length, mm         | 70.55          | 100            | 70.55          |
| $M_{active}$             | 22.08          | 32.1           | 22.7           |
| $M_{PM}$                 | 2.77           | 3.72           | 2.63           |

Table 2: Static FEA results for 28/30 pole PMSG.

# **Optimisation Results**



Figure 11: Pareto fronts of PM mass versus active mass of the PMSGs for the passive and acive systems, with the chosen optimal design points indicated.

| Parameters                           | Passive | Active | Pas:Act |
|--------------------------------------|---------|--------|---------|
| Outer diameter, $d_o$ (mm)           | 384     | 350    | 1:0.91  |
| Stator height, $h_{rotor}$ (mm)      | 6.8     | 4.74   | 1:0.70  |
| Magnet height, $h_{mag}$ (mm)        | 6.2     | 3      | 1:0.48  |
| Magnet pitch, $	heta_{mag}$ (%)      | 0.7     | 0.7    | 1:1     |
| Slot height, $h_{slot}$ (mm)         | 35.1    | 31.6   | 1:0.90  |
| Tooth width, $w_{tooth}$ (mm)        | 12      | 8      | 1:0.67  |
| Rotor height, $h_{stator}$ (mm)      | 5.8     | 4.125  | 1:0.71  |
| Axial length, $l$ (mm)               | 70.55   | 50     | 1:0.71  |
| Active iron mass (kg)                | 14.24   | 6.41   | 1:0.45  |
| Copper mass (kg)                     | 5.07    | 3.76   | 1:0.74  |
| PM mass (kg)                         | 2.77    | 0.88   | 1:0.32  |
| Total active mass (kg)               | 22.08   | 11.05  | 1:0.50  |
| External reactance, $X_{ext}$ (p.u.) | 1.88    | -      |         |
| Current density, $(A/mm^2)$          | 4.67    | 6.0    |         |
| Current angle, $lpha$ (degrees)      | 54.4    | 0      |         |
| Rated power, $P_g$ (kW)              | 4.22    | 4.26   |         |
| Efficiency, $\eta$ (%)               | 90.4    | 90     |         |

#### Table 3: Design optimisation results and component ratios



Figure 12: To scale representation of the optimised PMSGs in Table 3 for (a) passive and (b) active systems.

# Conclusions

## Conclusions

#### Static FE Simulation Method

- Passive charging systems have poor power matching with no external inductance.
- The proposed method is accurate and not computationally expensive.
- For maximum power point matching using non-overlap winding machines,  $X_{ext}/X_s$  is about a factor 4.
- Higher frequency generators require a much reduced external inductance, although slightly less efficiency.
- The proposed calculation method can be used excellently to do a wind site specific design optimization of the system, maximizing annual wind energy harvesting and minimizing generator and external inductance sizes.

### Conclusions

#### **Optimal Design**

- The passive system's generator active mass is almost twice that of the active system's generator active mass.
- The active system generator also outperforms the passive system generator in terms of PM mass, where it is found that the active system generator's PM mass is three times less.
- The passive system PMSG is more expensive to manufacture and the wind tower structure will most likely also be more expensive. Also requires large  $L_{ext}$ .
- The active system requires an LC filter and an expensive rectifier with complex position-sensorless control.

## Thank you.

#### Contact: Casper Labuschagne E-mail: 17539455@sun.ac.za





#### Effect of Number of Poles



Figure 13: Different pole-slot configurations for PMSG where (a) 28/30 pole-slot combination and (b) 56/60 pole-slot combination.

Table 4: Static FEA results for 28/30 pole PMSG and 56/60 pole PMSGs.

|                          | $G_1$          | $G_2$          | $G_1^*$        | $G_3$          | $G_4$          |
|--------------------------|----------------|----------------|----------------|----------------|----------------|
| $P_{g}$ , kW             | 4.22           | 4.25           | 3.86           | 4.20           | 4.25           |
| $f_s$ , Hz               | 74.67          | 74.67          | 116.67         | 149.33         | 149.33         |
| Turns per winding, $N_s$ | 14             | 10             | 14             | 7              | 5              |
| $V_{rms}$                | 23.5           | 23.6           | 23.65          | 24.0           | 24.0           |
| $J$ , A/mm $^2$          | 4.67           | 3.29           | 4.37           | 4.58           | 3.15           |
| $\alpha$                 | $54.4^{\circ}$ | $54.4^{\circ}$ | $68.8^{\circ}$ | $54.6^{\circ}$ | $54.7^{\circ}$ |
| $\eta$ , $\%$            | 90.4           | 92.4           | 88.6           | 89.62          | 90.46          |
| $X_s$ , p.u.             | 0.58           | 0.46           | 0.83           | 0.571          | 0.449          |
| $X_{ext}$ , p.u.         | 1.88           | 1.99           | 3.59           | 1.87           | 1.96           |
| $L_{ext}$ , mH           | 2.84           | 3.06           | 3.74           | 1.47           | 1.61           |
| $X_{ext}/X_s$            | 3.26           | 4.33           | 4.32           | 3.27           | 4.37           |
| Outer Diameter, mm       | 384            | 384            | 384            | 384            | 384            |
| Axial Length, mm         | 70.55          | 100            | 70.55          | 70.55          | 100            |
| $M_{active}$             | 22.08          | 32.1           | 22.7           | 22.08          | 32.1           |
| $M_{PM}$                 | 2.77           | 3.72           | 2.63           | 2.77           | 3.72           |

Table 4: Static FEA results for 28/30 pole PMSG and 56/60 pole PMSGs.

|                          | $G_1$          | $G_2$          | $G_1^*$ | $G_3$          | $G_4$          |
|--------------------------|----------------|----------------|---------|----------------|----------------|
| $P_{g}$ , kW             | 4.22           | 4.25           | 3.86    | 4.20           | 4.25           |
| $f_s$ , Hz               | 74.67          | 74.67          | 116.67  | 149.33         | 149.33         |
| Turns per winding, $N_s$ | 14             | 10             | 14      | 7              | 5              |
| $V_{rms}$                | 23.5           | 23.6           | 23.65   | 24.0           | 24.0           |
| $J$ , A/mm $^2$          | 4.67           | 3.29           | 4.37    | 4.58           | 3.15           |
| $\alpha$                 | $54.4^{\circ}$ | $54.4^{\circ}$ | 68.8°   | $54.6^{\circ}$ | $54.7^{\circ}$ |
| $\eta$ , $\%$            | 90.4           | 92.4           | 88.6    | 89.62          | 90.46          |
| $X_s$ , p.u.             | 0.58           | 0.46           | 0.83    | 0.571          | 0.449          |
| $X_{ext}$ , p.u.         | 1.88           | 1.99           | 3.59    | 1.87           | 1.96           |
| $L_{ext}$ , mH           | 2.84           | 3.06           | 3.74    | 1.47           | 1.61           |
| $X_{ext}/X_s$            | 3.26           | 4.33           | 4.32    | 3.27           | 4.37           |
| Outer Diameter, mm       | 384            | 384            | 384     | 384            | 384            |
| Axial Length, mm         | 70.55          | 100            | 70.55   | 70.55          | 100            |
| $M_{active}$             | 22.08          | 32.1           | 22.7    | 22.08          | 32.1           |
| $M_{PM}$                 | 2.77           | 3.72           | 2.63    | 2.77           | 3.72           |

### Effect of Generator Size

• Geometric dimensions held constant.

• Axial Length

Table 5: Static FEA results for 28/30 pole PMSG and 56/60 pole PMSGs.

|                          | $G_1$          | $G_2$          | $G_1^*$ | $G_3$          | $G_4$          |
|--------------------------|----------------|----------------|---------|----------------|----------------|
| $P_g$ , kW               | 4.22           | 4.25           | 3.86    | 4.20           | 4.25           |
| $f_s$ , Hz               | 74.67          | 74.67          | 116.67  | 149.33         | 149.33         |
| Turns per winding, $N_s$ | 14             | 10             | 14      | 7              | 5              |
| $V_{rms}$                | 23.5           | 23.6           | 23.65   | 24.0           | 24.0           |
| $J$ , A/mm $^2$          | 4.67           | 3.29           | 4.37    | 4.58           | 3.15           |
| $\alpha$                 | $54.4^{\circ}$ | $54.4^{\circ}$ | 68.8°   | $54.6^{\circ}$ | $54.7^{\circ}$ |
| $\eta$ , %               | 90.4           | 92.4           | 88.6    | 89.62          | 90.46          |
| $X_s$ , p.u.             | 0.58           | 0.46           | 0.83    | 0.571          | 0.449          |
| $X_{ext}$ , p.u.         | 1.88           | 1.99           | 3.59    | 1.87           | 1.96           |
| $L_{ext}$ , mH           | 2.84           | 3.06           | 3.74    | 1.47           | 1.61           |
| $X_{ext}/X_s$            | 3.26           | 4.33           | 4.32    | 3.27           | 4.37           |
| Outer Diameter, mm       | 384            | 384            | 384     | 384            | 384            |
| Axial Length, mm         | 70.55          | 100            | 70.55   | 70.55          | 100            |
| $M_{active}$             | 22.08          | 32.1           | 22.7    | 22.08          | 32.1           |
| $M_{PM}$                 | 2.77           | 3.72           | 2.63    | 2.77           | 3.72           |

Table 5: Static FEA results for 28/30 pole PMSG and 56/60 pole PMSGs.

|                          | $G_1$          | $G_2$          | $G_1^*$        | $G_3$          | $G_4$          |
|--------------------------|----------------|----------------|----------------|----------------|----------------|
| $P_g$ , kW               | 4.22           | 4.25           | 3.86           | 4.20           | 4.25           |
| $f_s$ , Hz               | 74.67          | 74.67          | 116.67         | 149.33         | 149.33         |
| Turns per winding, $N_s$ | 14             | 10             | 14             | 7              | 5              |
| $V_{rms}$                | 23.5           | 23.6           | 23.65          | 24.0           | 24.0           |
| $J$ , A/mm $^2$          | 4.67           | 3.29           | 4.37           | 4.58           | 3.15           |
| $\alpha$                 | $54.4^{\circ}$ | $54.4^{\circ}$ | $68.8^{\circ}$ | $54.6^{\circ}$ | $54.7^{\circ}$ |
| $\eta$ , $\%$            | 90.4           | 92.4           | 88.6           | 89.62          | 90.46          |
| $X_s$ , p.u.             | 0.58           | 0.46           | 0.83           | 0.571          | 0.449          |
| $X_{ext}$ , p.u.         | 1.88           | 1.99           | 3.59           | 1.87           | 1.96           |
| $L_{ext}$ , mH           | 2.84           | 3.06           | 3.74           | 1.47           | 1.61           |
| $X_{ext}/X_s$            | 3.26           | 4.33           | 4.32           | 3.27           | 4.37           |
| Outer Diameter, mm       | 384            | 384            | 384            | 384            | 384            |
| Axial Length, mm         | 70.55          | 100            | 70.55          | 70.55          | 100            |
| $M_{active}$             | 22.08          | 32.1           | 22.7           | 22.08          | 32.1           |
| $M_{PM}$                 | 2.77           | 3.72           | 2.63           | 2.77           | 3.72           |

Table 5: Static FEA results for 28/30 pole PMSG and 56/60 pole PMSGs.

|                          | $G_1$          | $G_2$          | $G_1^*$        | $G_3$          | $G_4$          |
|--------------------------|----------------|----------------|----------------|----------------|----------------|
| $P_{g}$ , kW             | 4.22           | 4.25           | 3.86           | 4.20           | 4.25           |
| $f_s$ , Hz               | 74.67          | 74.67          | 116.67         | 149.33         | 149.33         |
| Turns per winding, $N_s$ | 14             | 10             | 14             | 7              | 5              |
| $V_{rms}$                | 23.5           | 23.6           | 23.65          | 24.0           | 24.0           |
| $J$ , A/mm $^2$          | 4.67           | 3.29           | 4.37           | 4.58           | 3.15           |
| $\alpha$                 | $54.4^{\circ}$ | $54.4^{\circ}$ | $68.8^{\circ}$ | $54.6^{\circ}$ | $54.7^{\circ}$ |
| $\eta$ , $\%$            | 90.4           | 92.4           | 88.6           | 89.62          | 90.46          |
| $X_s$ , p.u.             | 0.58           | 0.46           | 0.83           | 0.571          | 0.449          |
| $X_{ext}$ , p.u.         | 1.88           | 1.99           | 3.59           | 1.87           | 1.96           |
| $L_{ext}$ , mH           | 2.84           | 3.06           | 3.74           | 1.47           | 1.61           |
| $X_{ext}/X_s$            | 3.26           | 4.33           | 4.32           | 3.27           | 4.37           |
| Outer Diameter, mm       | 384            | 384            | 384            | 384            | 384            |
| Axial Length, mm         | 70.55          | 100            | 70.55          | 70.55          | 100            |
| $M_{active}$             | 22.08          | 32.1           | 22.7           | 22.08          | 32.1           |
| $M_{PM}$                 | 2.77           | 3.72           | 2.63           | 2.77           | 3.72           |

Table 5: Static FEA results for 28/30 pole PMSG and 56/60 pole PMSGs.

|                          | $G_1$          | $G_2$          | $G_1^*$        | $G_3$          | $G_4$          |
|--------------------------|----------------|----------------|----------------|----------------|----------------|
| $P_{g}$ , kW             | 4.22           | 4.25           | 3.86           | 4.20           | 4.25           |
| $f_s$ , Hz               | 74.67          | 74.67          | 116.67         | 149.33         | 149.33         |
| Turns per winding, $N_s$ | 14             | 10             | 14             | 7              | 5              |
| $V_{rms}$                | 23.5           | 23.6           | 23.65          | 24.0           | 24.0           |
| $J$ , A/mm $^2$          | 4.67           | 3.29           | 4.37           | 4.58           | 3.15           |
| $\alpha$                 | $54.4^{\circ}$ | $54.4^{\circ}$ | $68.8^{\circ}$ | $54.6^{\circ}$ | $54.7^{\circ}$ |
| $\eta$ , $\%$            | 90.4           | 92.4           | 88.6           | 89.62          | 90.46          |
| $X_s$ , p.u.             | 0.58           | 0.46           | 0.83           | 0.571          | 0.449          |
| $X_{ext}$ , p.u.         | 1.88           | 1.99           | 3.59           | 1.87           | 1.96           |
| $L_{ext}$ , mH           | 2.84           | 3.06           | 3.74           | 1.47           | 1.61           |
| $X_{ext}/X_s$            | 3.26           | 4.33           | 4.32           | 3.27           | 4.37           |
| Outer Diameter, mm       | 384            | 384            | 384            | 384            | 384            |
| Axial Length, mm         | 70.55          | 100            | 70.55          | 70.55          | 100            |
| $M_{active}$             | 22.08          | 32.1           | 22.7           | 22.08          | 32.1           |
| $M_{PM}$                 | 2.77           | 3.72           | 2.63           | 2.77           | 3.72           |

### Static FEA Performance

#### Table 6: General performance of the static FEA simulations

|                            | $G_1$ | $G_3$ |
|----------------------------|-------|-------|
| Mesh Elements              | 17731 | 18241 |
| FEA iterations             | 13    | 13    |
| Total simulation time, $s$ | 28.8  | 33.7  |

### Static FEA Performance

#### Table 6: General performance of the static FEA simulations

|                            | $G_1$ | $G_3$ |
|----------------------------|-------|-------|
| Mesh Elements              | 17731 | 18241 |
| FEA iterations             | 13    | 13    |
| Total simulation time, $s$ | 28.8  | 33.7  |

#### Verification



Figure 14: Developed torque versus mechanical rotation obtained from transient (ANSYS Maxwell) and static (SEMFEM) solutions.