

ESTIMATION OF GLOBAL SOLAR RADIATION FROM SAURAN STATIONS IN SOUTH AFRICA USING AIR TEMPERATURE BASED HARGREAVES-SAMANI & CLEMENCE MODELS

BY SHABANGU CHARLOTTE

SUPERVISOR

:DR N.E. MALUTA

CO-SUPERVISOR

:MRS T. S. MULAUDZI

RENEWABLE ENERGY POSTGRADUATE SYMPOSIUM CONFERENCE

2018

LAYOUT OF THE PRESENTATION

- Introduction
- Study area
- Methodology
- Results and discussion
- Conclusion

- In 2020 renewable energy is expected to supply 15% of electricity in South Africa [4-6].
- knowledge of solar radiation data is important for designs and installation of solar designs [4-6].
- Global solar radiation is the total amount of solar energy received from the surface.
- Availability of quality measuring equipment (pyrheliometer and pyranometer) in South Africa[6].
- Several empirical methods have been developed for estimating global solar radiation.
- 11 SAURAN station sites in South Afrika.
- Reliability of temperature data from KZH SAURAN station.

- This study focuses on estimating global solar radiation using the air temperature data from one of the South African Universities Radiometric Network (SAURAN) stations around South Africa.
- Hargreaves-Samani & Clemence models use air temperature data only, Hence they were selected.

STUDY AREA

- There are 11 SAURAN stations installed in South Africa [9,10].
- The station under study is University of Kwazulu – Natal Howard college (KZH), situated in Durban at Kwazulu- Natal Province, South Africa

- KZH is situated in a coastal area [9,10]
- It consists of the following geographic coordinates: latitude (29.87098 ° E), longitude (30.97695° S) and altitude (150 m) [9,10].
- The following picture1 shows the geographical location of KZH.
- Picture 2 shows the places where the SAURAN station are installed.
- Active SAURAN stations are marked with black.

• Picture 1

Arcs Ko AneelerRd Pigeon Va Dale Rd Nature Res shalcolm Rd Ont R erve University of KwaZulu-Natal 0 Howard Ave ary Rd tunene Rd amont Rd Rick Turner R enorRé Google south Elgie Rd -0-

• Picture2

Page 4

METHODOLOGY

- Three years air temperature data (2014-2016) was downloaded from SAURAN stations.
- Data analysis
- KZH SAURAN station data complete.
- Hence KZH station was selected for this study
- Extraterrestrial solar radiation(H_o) was calculated through MATLAB software.

•
$$H_o = \frac{24 * I_{sc}}{\pi} \Big[1 + 0.033 \cos \Big(360 * \Big) \Big]$$

solar radiation [8,13,14].

- Equations (2) and (3) were used
- The models use daily minimum (T_{min}) and maximum air temperature (T_{max}) data as inputs [13].

$$H = K_r H_0 \sqrt{T_{max} - T_{min}}$$
(2)

• $K_r = 0.19$ [14]

- Clemence model was designed for estimating global solar radiation in south African sites which record air temperature only (16).
- The model gives *H* as: $H = (1.233 * H_0 * \Delta T + 10.593 * T_{max} 0.713 * T_{max} * \Delta T + T_{max} * \Delta T$

METHODOLOGY CONTINUES

- The two models are validated statistically using the computational MATLAB software. [17,18]
- i.e. Mean Bias Error (MBE), Root Mean Square Error (RMSE), Mean Percentage Error (MPE), coefficient of determination (R²) and t-statistic test (t) [17,18]
- *R*² is used to assess the performance of the model [18].

• The following equations were used to express the statistical analysis:

•
$$RMSE = \left[\frac{1}{n}\sum_{i=1}^{n}(H_{im} - H_{ie})^2\right]^{\frac{1}{2}}$$
, (6)

•
$$MBE = \frac{1}{n} \sum_{i=1}^{n} (H_{im} - H_{ie})$$
 (7)

•
$$MPE = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{H_{im} - H_{ie}}{H_{im}} \right) x \ 100\%$$
, (8)

•
$$R^2 = \left[1 - \sum_{i=1}^{n} \frac{(H_{im} - H_{ie})^2}{(H_{im} - \overline{H_{im}})^2}\right]$$
 (9)

•
$$t = \left[\frac{(n-1)(MBE)^2}{(RMSE)^2 - (MBE)^2}\right]^{1/2}$$
 (10)

METHODOLOGY CONTINUES

- where, H_{im} and H_{ie} represents the *i*th measured daily global solar radiation values and estimated daily global solar radiation values respectively[17,18]
- *n* denotes the total number of observations, $\overline{H_{im}}$ denotes the mean measured global solar radiation and n-1 represents the degrees of freedom [18].

RESULTS AND DISCUSSION

- The estimated global solar radiation data are then compared with the observed global solar radiation.
- MATLAB software was used to plot scattered plots
- Three scattered plots for the years 2014 -2016 are presented below as figures 1-3.
- Figure 1:Comparison between estimated and measured global solar radiation for KZH station in 2014

RESULTS AND DISCUSSION CONTINUES.....

Figure 2:Comparison between estimated and measured global solar radiation for

Figure 3 :Comparison between estimated

and measured global solar radiation for

RESULTS AND DISCUSSION CONTINUES

- Figure 1:estimated global solar radiation corelates well with measured global solar radiation for both models
- Figure 2 :there is a slight overestimation by Clemence model in April 2015
- Figure 3:Overestimation by Clemence model from April to may in 2016.
- Table 1:Both models obtained lowest values of MBE ranging between 0.013 to 0.0088.
- Clemence model obtained the MPE value of 1.0801 for 2015 ,showing overestimation.

- Hargreaves _Samani obtained lower values of MBE and MPE in all the years.
- Both the models obtained good values of RMSE, R² approaching 1 ,the statistic t value is 1 for both models, which proves the statistical analysis formulas to be valid.

Table 1: Statistical validations of the models for estimating monthly mean daily global solar radiation in KZH stations.

Year	MBE		MPE		RMSE		R ²		t-Value	
	(MJ/m²)		%		(MJ/m²)					
	Saman	Cleme	Sama	Clemence	Sama	Cleme	Saman	Cleme	Sama	Clemen
	i	nce	ni		ni	nce	i	nce	ni	се
2014	0.0013	0.0036	0.1285	0.3619	0.0246	0.0691	0.9995	0.9962	1.000	1.000
2015	0.0078	0.0108	0.7788	1.0801	0.1418	0.2063	0.9802	0.9657	1.000	1.000
2016	0.0057	0.0088	0.5667	0.8822	0.1083	0.1685	0.9898	0.9778	1.000	1.000

Page 11

CONCLUSION

- Hargreaves- Samani model was observed to be having lower values of MBE and MPE for 2014 to 2016.
- Both models have good values of R² approaching 1 and t -statistic value of 1.
- Hargreaves -Samani & Clemence models have been proven to have a good performance based on the values of R² approaching 1 for KZH.

 It can therefore be concluded that Hargreaves -Samani & Clemence models are suitable for estimating monthly mean global solar radiation in University of kwazulu natal Howard college.

FUTURE WORK

- It is in our interest to estimate global solar radiation from other SAURAN stations temperature data in south Africa.
- It would be great to work with sunshine hour models like Angstrom-Prescott model, which will be compared with air temperature models for estimating global solar radiation in particular area.

REFERENCES

- National resource account, energy accounts for South Africa 1995- 2001, statistics South Africa, pp.8-14, Pretoria, South Africa, 2005.
- REIPPPP focus on Free State, Limpopo ,North West ,Kwazulu -Natal, Mpumalanga, and Gauteng provinces, provincial report vol (4),pg.1-22,2017..
- Odell S.J. Comparative assessment of coal fired and nuclear power plants, pp.1-32, 2011.
- 4. Korachagaon I, Bapat V.N. Development of a site-independent mathematical model for the estimation of global solar radiation on earth's surface around the globe, *International Journal of Energy and Environment*, vol .3(2), pp.295-304,2012.

REFERENCES CONTINUES...

- 5. Myers D.R. Practical modeling for renewable energy applications, solar radiation.pp.1- 23,2013.
- 6. Du Plessis M. Cheaper electricity with renewables, pp. 7,1986
- Musango J.K, Amigun B, Brent A.C. Sustainable electricity generation technologies in South Africa:initiatives, Challenges and Policy Implications , Energy and Environment Research, Vol.1(1), pp.124-138, 2011.
- 8. Mackellar N, New M, Jack C. Observed and modelled trends in rainfall and temperature for South Africa :1960-2010, *South African Journal of Science*,vol.110(7),pp.1-13,2014.
- 9. Broughton K. SAURAN station details: Sun Stellenbosch university, Stellenbosch, Western Cape province, 2015.

REFERENCE CONTINUES.....

- Brooks M. J, du Clou S, Van Nie Kirk W.L, Gauché P, Leonard C, Mouzouris M .J, Meyer R, Van der Westhuizen N , Van Dyk E.E, Vorster F.J .SAURAN: A new source for solar radiometric in Southern Africa, *Journal of Energy in South Africa*, vol.26(1), pp. 2413-3051, 2015.
- 11. Kaempffer C, Germishuyse T. Climate data at the Agricultural Research Council, ARC, ISCW, pp.66-68,2009.
- 12. Government communication and information system, South Africa year book, the land and its people, pp.1-21,2001.
- Besharat F, Dehghan A.A, Faghih A.R. Empirical model for estimating global solar radiation: A review and case study, *Renewable and Sustainable Energy Reviews*, vol.21, pp.798-821, 2013.
- 14. Okonkwo G. N, Nwokonye A. O. Estimating global solar radiation from temperature data in Minna location, *European Scientific Journal*, vol.10(15), pp.254-264,2014.

REFERENCE CONTINUES

- 15. Almorox J. Estimating global solar radiation from common meteorological data in Aranjuez, Spain *Turkish Journal of Physics*, vol.35(1). pp.53-64,2011.
- Clemence, B.S.E. An attempt at estimating solar radiation at South African sites which measure air temperature only, *South African Journal of Plant and Soil*, vol.9(1), pp. 40-42, 2013.
- Adeala A. A, Huan Z , Enweremadu C.C . Evaluation of global solar radiation using multiple weather parameters as predictors for South African provinces, *Thermal Science*, vol.19 (2), pp. S495-S509,2015.
- Akpootu D.O, Sanusi Y.A. A new temperature-based model for estimating global solar radiation in Port- Harcourt south Nigeria, *International Journal of Engineering and Science*, vol. 4(1), pp. 63-73, 2015.

ACKNOWLEDGEMENT

- GEOSUN.....
- University of Venda
- Supervisors :N.E Maluta and Mrs. T.S Mulaudzi
- Sponsors : Center for renewable and Sustainable Energy studies

THANKSFORLISTENING