

Investigating the use of light diffraction for the closed-loop control of heliostats

M. Claassen & Dr. W.J. Smit

Solar Thermal Energy Research Group (STERG) Stellenbosch University

CENTRE FOR RENEWABLE AND SUSTAINABLE ENERGY STUDIE

Introduction to CRSs

• Central Receiver Systems

Background on Heliostat Control

• Open-loop control

- No aiming feedback during operation requires drives with very tight tolerances which are costly
- Deterministic and nondeterministic error sources cause drift requiring calibration, which is time consuming

Background on Heliostat Control

Closed-loop (local-feedback)

- Real-time alignment feedback negates the need for expensive drives with tight tolerances
- Mounting sensors on every heliostat can be expensive, esp. for large helio fields
- Sensors usually also require regular calibration

Background on Heliostat Control

Closed-loop ('Receiver-feedback')

Receiver Feedback

- Real-time alignment feedback negates the need for expensive drives with tight tolerances
- Does not require sensors on every heliostat
- Multiple/ All heliostats can be controlled simultaneously

• 1-D (Linear) diffraction grating

• Diffraction gratings

• 1-D (Linear) diffraction grating

STELLENBOSCH

UNIVERSITY

 $\langle \Sigma \rangle$

• Circular diffraction grating

Overview

- Aim: Determine direction of the spectral propagation order (direction of the zeroth propagation order coincides with the reflected beam from heliostat).
- Camera senses the colour of diffracted light from some propagation order (1st), infers wavelength
- The light diffracted in the direction of the camera has a functional relationship with the zeroth order.

- Determining k_{m=0}:
 One camera viewpoint
 - 1 Camera observes diffracted light and observes a specific colour, inferring the wavelength
 - Since the circular diffraction grating diffracts light into a cone, there are an infinite directions for the zeroth order reflected beam, but is constrained to lie on a surface of a cone with vertex angle 2θ and with axis along the camera-grating vector
 - Set of all possible incident vectors is the reflection (Snell's law) of the set of all possible reflection vectors and therefore also lies in a cone with angle vertex 2θ . Its axis is the reflection of the cameragrating vector.

 Determining k_{m=0}: Two camera viewpoints

Special case: Incident light, grating normal and cameras lie in a plane.

- 2 Camera each observes diffracted light and each observes a specific colour, each inferring the wavelength.
- For each viewpoint, there are an infinite number of directions for the zeroth order reflected beam, but is constrained to lie on a surface of a cone
- The intersection of the bases of the cones is the unique solution for the direction of the zeroth order

 Determining k_{m=0}: Two camera viewpoints

General case: Incident light lies in a an arbitrary plane

- The set of possible reflection vectors again lie along the surface of a cone for each viewpoint, but in this case there are two intersections.
- Therefore there is not a unique solution for the direction of the zeroth order vector

• Determining $k_{m=0}$: Three camera viewpoints

General case: Incident light lies in an arbitrary plane

- Adding a third camera viewpoint will constrain the direction of the spectral order to a unique solution (direction)

Challenges and Future Work

• Determine Wavelength observed?

100's spectral bands

1.0

0.9

0.8

0.7 Efficie

0.6

0.5

0.4

0.3

0.2

Tracking accuracy required ~ 2 m rad

Resolve wavelength Observed: 3 nm

FWHM

~ 2.3nm

300 350 400 450 500 550 600 650 700 750 800

Wavelength (nm)

RGB Cameras

1.0

0.9

0.8

0.7

0.6

0.5

0,4

0.3

0.2

0.1

0.0

Ĭ

Challenges and Future Work

• Determine Wavelength observed?

Challenges and Future Work

- Manufacture of Diffraction Gratings
 - Single Point Diamond Turning
 - Can achieve grating resolution, but expensive
 - Photolithography
 - Cheap, but can't achieve grating resolution
 - Holographic

Conclusion

- The method is possibly a low cost solution for controlling heliostats
- Can control multiple heliostats simultaneously
- Challenges:
 - -Resolving a wavelength
 - -Manufacture of circular diffraction grating?

Thank You

ACKNOWLEDGEMENTS:

Dr W.J. Smit

Centre for Renewable and Sustainable Energy Studies (CRSES)

CONTACT DETAILS:

mclaassen@sun.ac.za Solar Thermal Energy Research Group (STERG) Stellenbosch University South Africa

visit us: concentrating.sun.ac.za