

Design and Testing of Externally Finned Tube Cavity Receiver for Brayton Cycle Preheating Purposes

EJJ. Basson^a, JE. Hoffmann^a AB. Sebitosi^b

^aSolar Thermal Energy Research Group (STERG), Stellenbosch University

^bCentre for Renewable and Sustainable Energy Studies (CRSES),

Stellenbosch University

CENTRE FOR RENEWABLE AND SUSTAINABLE ENERGY STUDIE

Overview

The experimental research process undertaken

- Background of research
- Methodology employed
- Results and observations
- Conclusions

Air as HTF for CSP cycles

Why air?

- Freely available
- Safe, stability at high temperatures
- Absence of phase change
- No risk of freezing
- Brayton cycle integration

SUNDISC cycle

Stellenbosch University Direct Storage Charging Dual-Pressure Air Receiver

- Co-generation power cycle
- Aimed at bypassing the Bottleneck of GT

Figure 1: Schematic of the SUNDISC cycle (Heller, 2016)

The modified HPAR

Hybrid Pressurised Air Receiver

- Tubular volumetric cavity design
- Pressurised internal air
- Induced flow into the cavity
- Macro and micro cavity effects

Figure 2: Schematic of the HPAR

Receiver design

Process overview

- Literature
- Simulation

Figure 4: Final test receiver

Construction and installation

Process undertaken

Figure 5: Machining of the fins

Figure 6: Instrumenting the receiver

Figure 7: Installed on the tower

Experimental testing overview

34:45 hours of testing

- Half and full heliostat field
- Windless and windy days
- Isolated both the internal and external fluid
- Variation in both the internal and external fluid mass flow rate

Figure 8: Heliostat field and test tower

Field Characterisation

Capability and limitations

- No data on field performance
- No means of measuring
- Large cosine losses (Eastern field)
- Limited window of opportunity

TELLENBOSCH

UNIVERSITY

Results

Overall receiver thermal behaviour

Figure 9: Overall field efficiency comparison for two tests

Results

Circumferential temperature distribution

- Fast ramp up after interruptions
- Control the thermal difference
- Location specific

 \mathbf{C}

Cavity temperature distribution

Interpolated steady-state distribution

Table 1: Conditions at steady state

Variable	Value	1
DNI	855 W/m ²	
T _{amb}	19.69°C	
T _{water}	38.83°C	t (m)
V _{wind}	0.69 m/s	neight
$\dot{m}_{ m air}$	0.0713 kg/s	iver]
$\dot{m}_{ m water}$	0.0238 kg/s	Rece
V _{air} in	0.414 m/s	

Sensitivities

Receiver response to environmental influences

- Several variables influencing the tests
- Insensitive to ambient wind (max 7.3m/s in test with aperture inlet velocity of 0.5m/s)
- Mass flow rate relationship

Observations

Visual observations during the tests

- No volumetric effect
- No noticeable hot spot
- Spillage from field

Conclusion

The modified HPAR test demonstrated the following

- Ability to modulate the circumferential temperature gradient
- Ability to control the different energy absorption quantities
- Ability to capture/ repurpose convective losses

Thank you

ACKNOWLEDGEMENTS:

Jaap Hoffmann for guidance, Stellenbosch University Mechanical workshop for the construction and installation, NRF for the funding and Hein Joubert for getting the heliostat field operational

CONTACT DETAILS: EJJ Basson email: 17495644@sun.ac.za Solar Thermal Energy Research Group (STERG) Stellenbosch University South Africa

> STERG@sun.ac.za +27 (0)21808 4016

visit us: concentrating.sun.ac.za