

Computational Fluid Dynamics Modelling of a Recessed Open Volumetric Receiver Configuration

> Mathew Jo Mathew Supervisors: Mr J. Pitot, Dr M.J. Brooks

Group for Solar Energy Thermodynamics (GSET) University of KwaZulu-Natal (UKZN)

13 July 2017

Presentation Overview

- 1. Background on Open Volumetric Receiver (OVR)
- 2. Research Proposal and Objectives
- 3. Results from Preliminary Analytical Modelling
- 4. Discussion of future work

Central Receiver Systems

- Heliostats redirect the solar radiation to the receiver.
- The receiver is placed at the top of a tower.
- Heat is transferred to the air in the receiver.
- Air is passed through a Heat Recovery Steam Generator (HRSG) (Water -> steam).
- Excess air is stored in storage medium (pebbles, rock piles or even refractory ceramic material).
- Hot air from HRGS is re-entrained to the receiver to improve its thermal performance.

Fig 1: Central Receiver System (Hoffschmidt, 2014)

Open Volumetric Receivers (OVRs)

- Can impart higher temperature loads to the power block of STTP.
- Porous absorbers embedded into OVRs to absorb solar radiations.
- Absorber Materials: Ceramics (SiC, SiSiC, Al₂O₃) or Metals (AISI 310, Nichrome).
- State-of-the-art OVR: HiTRec II design.

Fig 3: Monolith Honeycomb Structure (Fend,2004)

Fig 4: Open Cell Structure (Fend,2004)

Fig 2: HiTRec II absorber modules assembled in a 3MW (thermal) receiver (Avila Marin, 2011)

Volumetric Effect

- A phenomenon where the temperature at the front end of the absorber is lower than the outlet air temperature.
- Can only be achieved under ideal thermo-physical conditions.
- Has been shown to be possible in theory under local thermal equilibrium conditions.
- The 'Volumetric Effect' has not been practically demonstrated.

Fig 5: Volumetric Effect (Pitot de la Beaujardiere, 2015)

~ 100

T A

Materia

kW.n

Concentrated Sola

Radiation

~ 200

kW·m⁻²

OVR's vs. Tubular Receivers

OVR

- Air free and capable of attaining temperatures in excess of 800 °C
- Volumetric Effect
- Air has poor heat transfer characteristics
- Poor air return ratio
- Low Specific heat -> higher heat transfer fluid circulation demands

Tubular Receiver

- Radiation losses at the tube surface
- Low incident flux levels due to overheating of the tubes
- Thermal stresses which occur on tubes limit the performance of the receiver
- Molten salts (HTF) break down after attaining it's peak temperature (~550 °C)

Hot Fluid

OVR Plants

Name	Status	Place	Rated Power Output
Solar Tower Jülich	Deployed (2009)	Jülich, Germany	1.5 MW _e
PHOEBUS Solar power plant	Proposed (1980s)	Jordan	30 MW _e
PS10	Proposed (1999)	Sevilla, Spain	11 MW _e
Al Sol	Proposed	Algeria	N/A

Fig 7: Solar power Tower - Jülich (Hoffschmidt, 2014)

Fig 8: PS10 (NREL, 2017)

Wind Speeds

 V_{rec} = $V_{10} (\frac{h_{rec}}{10})^{\frac{1}{7}(\text{sisterson}, 1983)}$

Where,

$$\begin{split} V_{rec} &= \text{wind velocity at the desired height} \\ V_{10} &= \text{Wind velocity at 10 m} \\ h_{rec} &= \text{height of the receiver} \end{split}$$

- Day: 24th July
- Data obtained from TMY 3 of Daggert, California

Height	Max. Speed	Mean Speed at 10 m/s
10 m	10,8 m/s	7,71 m/s
150 m	15,9 m/s	11,35 m/s
200 m	16,6 m/s	11,83 m/s

Fig 9 : Wind speed at height of 10 m vs. 150 m vs. 200 m

Fig 10: CFD on HiTRec Modules (Roldan, 2016)

Research Proposal

To numerically model a Recessed OVR Configuration with the aim of improving the air re-entrainment, also indexed as Air Return Ratio (ARR).

Objectives

- To develop a CFD modelling approach in STAR-CCM+ that suitably captures the fluid dynamic behaviour of the new receiver concept.
- To determine the optimal geometric configuration and operating parameters of the receiver.
- To characterise the performance of the receiver for a range of operating conditions.
- To benchmark the performance of the new receiver against an existing design.

Recessed Receiver configuration

Fig 11: Rendered model of the Recessed Receiver Configuration

• Concentration ratio of CPC: 2

Fig 12: Mechanism behind the Recessed Receiver Configuration

Modelling Methodology

$$\dot{T}_{rec,o} = -870, 31 \left(\frac{\dot{Q}_{int}}{\dot{m}_a}\right)^2 + 2044, 2 \left(\frac{\dot{Q}_{int}}{\dot{m}_a}\right) - 398, 59$$

 $\dot{m}_a = 0,06183 \frac{\text{kg}}{\text{s}}$
 $v = 0,45 \text{ m/s}$

Pressure Drop Across the absorber – Darcy-Forchheimer Equation

$$\frac{\Delta P}{L} = \left(\frac{\mu_a}{K_1}v + \frac{\rho_a}{K_2}v^2\right)$$

Where,

 $\frac{\mu_a}{K_1}$ = Porous viscous resistance coefficient

 $\frac{\rho_a}{K_2}$ = Porous inertial resistance coefficient

PRESSURE-DROP CHARACTERIZATION

HiTRec Absorber Modelling Parameters

Analytical Modelling				
Porosity	0,495			
Width	0,115 m			
Thickness	0,060 m			
Inertial Permeability co-efficient	0,011 m (Becker,2006)			
Viscous Permeability co-efficient	10^{-7} m^2 (Becker,2006)			
Pressure Drop across the absorber (Cold Analysis)	6,36 Pa			
Pressure Drop across the absorber (Cold Analysis) Numerical Modelling	6,36 Pa			
Pressure Drop across the absorber (Cold Analysis)Numerical ModellingPorous Inertial resistance	6,36 Pa 6,458 kg/m ⁴			
Pressure Drop across the absorber (Cold Analysis)Numerical ModellingPorous Inertial resistancePorous viscous resistance	6,36 Pa 6,458 kg/m ⁴ 11,094 $\frac{\text{kg}}{\text{m}^3}$.s			

Computational Domain – Preliminary Cold Flow Analysis

Mesh Settings		
Туре	• 2-D	
Meshers	PolygonalPrism layer	
No. of prism layers	2	
Prism layer thickness	3,78 mm	
Mean Mesh size	0,003 m	

Boundary Conditions		
Stagnation Inlet	101325 Pa	
Pressure Outlet	101318,64 Pa	
Mass flow inlet	0,030915	

Future Work

Numerical Modelling

- Cold flow analysis
- Model Refinement
- Hot flow analysis to determine the ARR at assumed operating conditions
- Effects of wind at different directions and magnitudes on the ARR.
- Altering the geometry of the recessed receiver for optimal performance
- Journal Article

<u>Thank you</u>

Acknowledgement:

Mr Jean Pitot (supervisor) Dr M.J. Brooks (co-supervisor)

References

Avila-Marin, A. L., Alvarez-Lara, M. and Fernandez-Reche, J. (2013) 'Experimental results of gradual porosity wire mesh absorber for volumetric receivers', *Energy Procedia*. Elsevier B.V., 49, pp. 275–283. doi: 10.1016/j.egypro.2014.03.030.

De, J. P. P., Reuter, H. C. R., Klein, S. A. and Reindl, D. T. (2016) 'ScienceDirect Impact of HRSG characteristics on open volumetric receiver CSP plant performance', *SOLAR ENERGY*. Elsevier Ltd, 127, pp. 159–174. doi: 10.1016/j.solener.2016.01.030.

Fend, T., Hoffschmidt, B., Pitz-Paal, R., Reutter, O. and Rietbrock, P. (2004) 'Porous materials as open volumetric solar receivers: Experimental determination of thermophysical and heat transfer properties', *Energy*, 29(5–6), pp. 823–833. doi: 10.1016/S0360-5442(03)00188-9.

Hoffschmidt, P. B. (2014) 'Receivers for Solar Tower Systems'.

References

NREL. 2017. *Concentrating Solar Power Project*. [ONLINE] Available at: https://www.nrel.gov/csp/solarpaces/project_detail.cfm/projectID=38. [Accessed 10 July 2017]

Roldán, M. I., Fernández-Reche, J. and Ballestrín, J. (2016) 'Computational fluid dynamics evaluation of the operating conditions for a volumetric receiver installed in a solar tower', *Energy*, 94, pp. 844–856. doi: 10.1016/j.energy.2015.11.035

Sisterson, D. L., Hicks, B. B., Coulter, R. L., and Wesely, M. L., 1983, "Difficulties in Using Power Laws for Wind Energy Assessment", Solar Energy, Vol. 31, pp. 201-204.