

Simulating the effect of solarisation on the performance of a gas turbine

C. Homann¹,

J. van der Spuy² and T. von Backström²

¹BEng (2013), 2nd year Masters Student (MEng); Solar Thermal Energy Research Group (STERG), Department of Mechanical and Mechatronic Engineering, Stellenbosch University

² Solar Thermal Energy Research Group (STERG), Department of Mechanical and Mechatronic Engineering, Stellenbosch University

3rd Annual STERG SolarPACES Symposium 14 & 15 July 2015 Stellenbosch, South Africa

Contents

- Background
- Problem statement
- Methodology
 - Thermodynamic analysis
 - Flownex Simulation
- Results
- Conclusion
- Future work

Background

 $\langle \rangle$

Background

SUNSPOT cycle (Kröger, 2011)

Solar-hybrid gas turbine

 $\langle \rangle$

- Low water consumption
- High conversion efficiency
- Quick start-up/ shut-down times
- System reliability

Objectives

- Model the Rover gas turbine
- Design and model a solar hybrid Rover gas turbine
- Adapt and re-evaluate both the existing Rover gas turbine and solar hybrid Rover gas turbine, including a newly designed compressor
- Field testing of the Rover gas turbine
- Design and evaluate an interconnection device
- Feasibility of scaling

3rd Annual STERG SolarPACES Symposium 14 & 15 July 2015 Stellenbosch, South Africa

Thermodynamic analysis

Evaluating the Brayton cycle

 $\langle \rangle \rangle$

Flownex Simulation Environment

Rover gas turbine

- Intake system
- Compressor
 - Turbine

.

- Combustion chamber
- Boundary conditions

3rd Annual STERC SolarPACES Symposium 14 & 15 July 2015 Stellenbosch, South Africa

Results

Model Validation

	Thermodynamic	Flownex gas
	analysis	turbine model
Work output [kW]	43.32	42.41
Thermal efficiency	10.39%	10.59%
Combustion chamber ΔP [kPa]	14.18	13.95
Compressor efficiency	69.91%	70.00%
Turbine efficiency	85.14%	84.97%

• Less than 3% difference between analysis and Flownex model

Flownex® Simulation Environment

Solar-hybrid gas turbine model

Solar receiver

- Pressure drop 12 kPa (SOLGATE receiver)
- Piping up and down the tower

3rd Annual STERC SolarPACES Symposium 14 & 15 July 2015 Stellenbosch, South Africa

Results

14 & 15 July 2015

Stellenbosch, South Africa

concentrating.sun.ac.za

ERSITY

 $\Diamond \Diamond$

Results

3rd Annual STERC SolarPACES Symposium 14 & 15 July 2015 Stellenbosch, South Africa

 $\Diamond \Diamond$

Conclusion

- Simulations predicted Rover gas turbine performance within 3%
- Solar-hybrid gas turbine
 - Increase in efficiency
 - Decreased net power output

3rd Annual STERG SolarPACES Symposium 14 & 15 July 2015 Stellenbosch, South Africa

Future work

- Implement newly designed compressor
- Further refinement of the model
- Gas turbine field testing
- Design and analyse interconnection device
- Feasibility of scaling

References

- Flownex (2014) Flownex Library Manual, [online] Available from: www.flownex.com/info@flownex.com.
- Quarta, N. J. (2012) Simulation of a Hybridised Solar Gas Turbine System, University of the Witwatersrand, Johannesburg.
- SOLGATE Report (2005) Solar hybrid gas turbine electric power system, Energy.

3rd Annual STERG SolarPACES Symposium 14 & 15 July 2015 Stellenbosch, South Africa

Thank you

ACKNOWLEDGEMENTS:

NRF CRSES

CONTACT DETAILS:

Christiaan Homann Solar Thermal Energy Research Group (STERG) Stellenbosch University South Africa

chomann@sun.ac.za +27 (0)21 808 4016

visit us: concentrating.sun.ac.za