

System layout and performance prediction for a solar-hybrid microgas turbine

B Ssebabi, Prof F Dinter and Dr J van der Spuy

Solar Thermal Energy Research Group (STERG), University of Stellenbosch

3rd Annual STERG SolarPACES Symposium 14 & 15 July 2015 Stellenbosch, South Africa

Overview

- Background
- Solar-hybrid gas turbine systems in literature
- Application of a turbocharger as a micro-turbine
- Application of a turbocharger as a solar-hybrid MGT

Background

- Solar-hybrid power systems combine solar energy and fossil fuel = reliable power with full dispatchability
- Application of MGTs in solar power systems is a relatively new research field
- Past research has mainly focussed on the test and validation of receiver concepts

visit concentrating.sun.ac.za contact sterg@sun.ac.za

Background (cont'd)

Solar-hybrid gas turbine system

Solar-hybrid Brayton cycle

 $\langle \rangle$

Solar-hybrid gas turbine systems in Iterature

- Include 3 European Commission funded projects; SOLGATE, SOLHYCO and SOLUGAS
- Employed commercial and relatively expensive gas turbines – also complicated in construction
- Gas turbines faced numerous operational challenges and eventually had to be shut down

3rd Annual STERG SolarPACES Symposium 14 & 15 July 2015 Stellenbosch, South Africa

Solar-hybrid gas turbine systems in Iterature (cont'd)

- SOLGATE: Modified an Allison model 250 helicopter engine
- Faults with the oil system cut short the turbine tests

Phase 1	Phase 2
$T_{rec,out} = 800 \ ^{\circ}\mathrm{C}$	$T_{rec,out} = 959 \ ^{\circ}\mathrm{C}$
$P_{abs} = 6.5$ bar	$P_{abs} = 5.5$ bar
$P_{elec} = 230 \text{ kWe}$	$P_{elec} = 170 \text{ kWe}$
$\eta_{turb}=20~\%$	$\eta_{turb} = 18~\%$
Solar fraction = 60%	Solar fraction = 70%
Total gas turbine operation time	Total gas turbine operation time
of 73 hours, 51 with solar	of $61^{1}/_{2}$ hours, $45^{1}/_{2}$ with solar
radiation	radiation

Solar-hybrid gas turbine systems in Iterature (cont'd)

- SOLHYCO: Initially adapted the SOLGATE gas turbine to bio-diesel operation
- Modified commercially available 100 kWe *Turbec* T100 micro-turbine for solar-hybrid cogeneration application

• Faulty oil cooling system cut short the bio-

- *Turbec* T100 micro-turbine
- Output electric power also decreased and unstable control and surges occurred during operation and shutdown

diesel turbine tests

3rd Annual STERG SolarPACES Symposium 14 & 15 July 2015 Stellenbosch, South Africa

Application of a turbocharger as a micro-turbine

- Turbochargers are relatively cheap and abundant
- Performance and efficiency of modern small turbochargers has greatly improved

concentrating st

- Availability of cheap highly efficient high speed motor generators
- MTT b.v. (Micro Turbine Technology) developed a 3 kW recuperated micro-turbine for CHP applications based on turbocharger technology

3rd Annual STERG SolarPACES Symposium 14 & 15 July 2015 Stellenbosch, South Africa

 $\langle O \rangle$

Application of a turbocharger as a micro-turbine (cont'd)

- Combined off-the-shelf turbocharger components with in-house built components
- Improved individual component performance so as to increase net electric output and efficiency
- Final test results showed increase in electric efficiency from 12.2% to 17.2%, at an electric output of 3.4 kWe

Gas generator tests	Simple cycle tests	Recuperated cycle tests
$P_{elec} = 3.25 \text{ kWe}$	$P_{elec} = 2.8 \text{ kWe}$	$P_{elec} = 2.7 \text{ kWe}$
$\eta_{th} = 6.34\%$	$\eta_{elec} = 6.28\%$	$\eta_{elec} = 12.2\%$
$N = 240\ 000 \text{ rpm}$	$N = 218\ 000 \text{ rpm}$	$N = 240\ 000 \text{ rpm}$

• The use of a turbocharger ensures a simple and modular structure, easy usage and low cost

Inputs:

 $PR_{comp} = 2.5$

 $T_{03} = 1100 \text{ K}$

η_{comp} = **75%**

 $\eta_{turb} = 68\%$

η_{comb}= 99%

 $\Delta Pb = 2\%$ comp. deliv. press.

• Determine design point performance for a simple gas turbine Brayton cycle

Simple micro-gas turbine system

3rd Annual STERG SolarPACES Symposium 14 & 15 July 2015 Stellenbosch, South Africa

Results:

Specific work output = 54.5 kJ/kg Air mass flow required (10 kW plant) = 0.183 kg/s Specific fuel consumption = 0.345 kg/kWh Cycle efficiency = 24%

3rd Annual STERG SolarPACES Symposium 14 & 15 July 2015 Stellenbosch, South Africa

 $\langle O \rangle$

• Model simple gas turbine system in Flownex

Simple gas turbine model in Flownex

3rd Annual STERG SolarPACES Symposium 14 & 15 July 2015 Stellenbosch, South Africa $\langle \rangle$

Select turbocharger from Garrett catalog and input compressor and turbine performance maps

Digitised compressor map

3rd Annual STERC SolarPACES Symposium 14 & 15 July 2015 Stellenbosch, South Africa 60

Work in pipeline:

 Design, build and test solar-hybrid MGT combustor at the Institute of Thermal Turbomachinery and Machinery Laboratory, University of Stuttgart

3rd Annual STERG SolarPACES Symposium 14 & 15 July 2015 Stellenbosch, South Africa

 $\langle O \rangle$

Thank you

ACKNOWLEDGEMENTS:

- Centre for Renewable and Sustainable Energy Studies (CRSES)
- Solar Thermal Energy Research Group (STERG)

CONTACT DETAILS:

Brian Ssebabi Solar Thermal Energy Research Group (STERG) Stellenbosch University South Africa

STERG@sun.ac.za +27 (0)21 808 4016

visit us: concentrating.sun.ac.za