

Tidal Lagoon Swansea Bay

5-th Renewable Energy Postgraduate Symposium.13 July 2015

Ton Fijen, Technical Director, Tidal Lagoon Power.

UK fleet of lagoons

Swansea Bay Tidal Lagoon

Wall length: 9.5 km 11.5 km² Area: Installed capacity: 320 MW Annual output (net): 570 GWh Annual CO₂ savings: 270,000 t Design life: 120 yrs Height of wall: 5-20 m Wall above low water: 13 m (max) 4.5 m (max) Wall above high water: Tidal range Neaps: 4.1 m Tidal range Springs: 8.5 m

How a tidal lagoon works

- Flood tide rises around the low water lagoon
- Sluice gates are opened, an inward flow of water drives the turbines
- 3. Gates are shut when lagoon is full
- 4. Tide ebbs, leaving lagoon full
- Gates are re-opened, an outward flow of water drives the turbines

Four tidal movements, four periods of generation per day – 14 hours total daily generation time

Generating on the flood tide

Generating on the ebb tide

Energy & Emissions Context

UK energy sources (2011) – 88% fossil fuels, 8% nuclear, 4% renewables.

• Ofgem : UK energy crunch by 2017 as power plants expire faster than they are built.

Climate Change Act 2008 – 80% reduction in carbon dioxide emissions by 2050

EU Renewables Directive 2009 – 15% of UK energy needs from renewables by 2020

Equates to 30% of renewable electricity

Energy & emissions context

Share of renewable energies in gross final energy consumption in EU-27 countries in 2010 (in %)

Why Swansea ??

- Site of a previous investigation
- Large tides
- Relatively shallow water depths
- Significant Public support
- Environmentally less sensitive
- Acceptable in terms of expected timeline for planning permission, expected total cost
- Good access, road, rail, marine.
- Available electrical infrastructure.

WHERE ARE WE NOW ??

- All EIA/ Planning studies completed.
- Decision Examinators, 9 March 2015
- Decision Secretary of State, 9 June 2015
- Tenders have closed on Turbine, Civil structure Marine and onshore works.
- All preferred bidders have been appointed
- Financial Close for Project , September 2015
- Start of Construction on site: February 2016

Work-to-date: EIA, Viability & Design

2 years of site-specific development work suggests Swansea Bay offers great potential for lagoon construction. Key work streams:

- Hydrodynamic modelling
- EIA . 24 specialist studies.
- Energy optimisation / value engineering maximise energy output; reduce cost of sea wall, turbine housing, construction methods
- **Turbine design** Voith/Alstom/GEAH.
- Grid connection discussions with National Grid & Western Power Distribution
- Leasing & consents engagement with landowners
- Onshore masterplanning maximising onshore opportunities
- Bathymetric survey, soil investigation.

Geophysical Interpretation

Fish Encounter Modelling

Understanding the tides

Full Moon

Three Quarter Half Moon New Moon First Quarter Half Moon

Understanding the tides

Why do we have such a large tidal range?

Generation, sluicing and Mitigation Pumping

Figure 1 B (Mitigation pumping)

Figure 2 A (Turbining only)

Energy modelling

2D modelling animation (dt = 15min)

Breakwater design

- 1. Breakwater comprises bunds of quarry run with sand fill in between
- 2. Armour rock is placed on top
- 3. Rock and quarry run is transported from our own quarry to the lagoon by sea

SECTIONAL ELEVATION

Design validation

Physical scale model testing (HR Wallingford laboratories)

- 2D model on 1:35 scale
- Testing of frequent & extreme conditions up to 1 in 500 year storm
- Aim: validate & optimize design on armour & cap stability & overtopping

Physical model test bund wall

Validation on hydraulic design

1 in 500 yr conditions-

1-3t rear slope

Bund construction

- Dumping of Quarry Run bunds with Side Stone Dumping Vessels or Split Barge Dumping
- Hydraulically placed sand fill in between bunds with Cutter Suction Dredger or Trailing Suction Hopper Dredger
- Placement of various rock grades on top

Side Stone Dumping Vessel

Bund wall construction – hydraulic sand infill

Cutter Suction Dredger (left & below):

The sand infill will be placed by hydraulically filling in between the quarry run bunds

Sediment removal area

Key information

Sediment removal area approx 2.5 km²
Average depth of sediment removal 3 m.
Alternative: Smaller area, increased depth.
Average depth of removal for turbine housing 12 m below sea bed.

Dean Quarry – St. Keverne, Cornwall

- High density gabbro rock
- Construction of wave protected facility with two berths suitable for 10,000t barges
- Annual capacity of about 1 million tonnes
- Alternative sourcing: Rock from quarry in Norway, Scotland, Ireland

Turbine and Sluice-gate housing structure.

Turbine and Sluice Physical modelling

3D model & CFD and physical modelling

- TLP commissioned Deltares (Holland) to do this modelling
- Validation with physical model + wave action
- Alignment with turbine model tests

Sluices

• Finished March 2015

Temporary bund wall (cofferdam)

Sluice- gate structure.

Turbine housing structure.

Turbines design and iteration

Three major hydro turbine suppliers in a competitive design tender to supply low head, bi-directional bulb turbines.

Variable speed double regulated bulb turbines, from Andritz

- Movable guide vanes
- Variable pitch propeller (Kaplan runner)
- squirrel cage induction generators (cheaper to manufacture & more robust design)
- Converters
- Delivers higher efficiency over 4 quadrants
- Compact design allows for installation of complete units from dockside assembly plant

Significant iterative improvements in power output, pumping performance and efficiencies

Double Regulated Bulb Turbine

Andritz turbine for Shiwa.

Turbine components

Dockside turbine assembly hall

Turbine and gate housing

Construction quantities

Sand fill – approx. 7-8 M m3

- Perm. Bund wall: 4-5Mm3
- Temp. bund wall: 1Mm3
- Landscaping: 2Mm3

Rock – approx. 4 to 6 M tonne of quarry run and armour

Perm. Bund wall: 6M tonne Temp. bund wall: 1M tonne (re-used)

Concrete – approx. 200,000 m3 of reinforced concrete in turbine and sluice gate structures

- Turbine housing: 120,000 m3
- Sluicegate housing: 40,000 m3
- Flow guiding structures: 40,000 m3

Construction sequence – 1st season

Construction sequence:

Construct temporary
 bund – team 1

 Construct western bund starting from shore and working out – team 2

Remove ABP breakwater

Construct Phase 1
 eastern bund starting
 from shore – team 2

Construction sequence – 2nd season

Construction sequence:

Extend DCWW outfall by 1500m
Realignment of Neath Port training wall
Construct phase 2 of the Eastern Bund

Construction sequence – 3rd season

Construction sequence:

Remove temporary bund – team 1
Construct final section of Eastern Bund – team 2
Note materials from temporary bund will be re-used where possible in closing the eastern bund.

Grid connection

- Along Western bund wall
- South of ABP Queens Dock, and across to Fabian Way
- Along Fabian Way in westbound verge

•Across Crymlyn Burrows SSSI, under existing metalled track

River Neath crossing –
 Directional Drilling

Architectural designs

Western Landfall Building – O&M, boating centre

Architectural designs

Western Landfall Building – O&M, boating centre

Architectural designs

Offshore Building – O&M and visitor centre

Employment and economic stimulus in Wales

- Construction: 1850 full time equivalent jobs (5,540 new job years) directly created during three-year construction
- Operations & maintenance: est. 60 longterm, permanent jobs running the lagoon
- Leisure: est. up to 90 additional leisure industry jobs
- Gross Value Added: £173m during construction, £264m lifetime operations, £252m lifetime leisure impacts

Independent data from Cardiff Business School. *Turning the Tide:* the economic significance of the Tidal Lagoon Swansea Bay, Prof M Munday, Prof C Jones, Welsh Economy Research Unit, Cardiff University

UK fleet of lagoons

Future Lagoons: key statistics

ltem	SBTL	Cardiff	Newport	Bridgwater	Colwyn Bay	West- Cumbria	Total
Surface area [km ²]	11.5	69.8	64.5	281.6	123.6	156.4	725.4
Total wall length [km]	9.9	21.3	27.6	32.5	25.6	31.3	148.2
Bund wall length [km]	9.5	19.7	25.9	27.0	23.5	28.4	134.0
Cofferdam length [km]	1.9	5.0	5.3	15.1	7.2	8.1	42.5
No. of turbines	16	90	65	220	75	100	566
No. of sluices	8	25	30	95	50	70	278
No. of blocks	1	2/3	2/3	5	3	3	16
Emax [GWh/year]	975	10,356	10,425	38,311	7,774	10,362	78,203
Average tide [m]	6.67	9.21	9.46	8.58	5.75	5.92	
Net AEP [GWh] - without pumping	512	4,828	4,352	14,190	2,958	3,955	30,795
Power installed [MW]	320	2,700	1,950	6,600	2,250	3,000	16,820

Some UK statistics:

- UK electricity consumption 290 TWh in 2013
- Renewable installed capacity: 19.5 GW in 2013. (Mainly wind).
- Renewables 15 % of electricity generation (2013).
- Cardiff Tidal Lagoon, 5.5 TWh or about 2 % of UK demand.
- 6 potential Tidal Lagoons can provide about 8 % of electricity demand.

Future lagoons: volume & programme

Lagoon	Turbines	Sluices	Construction start	Power On	
Swansea	16	8	2015	2019	
Cardiff	60-90	30	2018	2023	
Newport	60-70	20	2019	2024	
Bridgwater	180-220	95	2021	2027	
Colwyn Bay	65-75	50	2022	2027	
West Cumbria	80-100	70	2020	2025	

Cardiff Timeline

R & D Focus:

- 2 D power output modelling
- Multi-basin lagoons.
- More balanced power output, base load ?
- Housing structure, in-situ versus caisson construction.
- Reduce Loss of intertidal area.
- Compensation of intertidal habitat.
- Combining tidal lagoons and wind turbines
- Improve fish friendliness.
- Sedimentation, maintenance dredging

High tides and Phasing

More Detail in Severn

Power Output 4 lagoons, spring tide.

Power output - GW (Dual Mitigation Pumping Mode)

Power output, 4 lagoons Neap tide

Newport, 2 – lagoon system.

THANK YOU!

