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ABSTRACT 

In this study a semi-passive pulse thermal loop (PTL) was designed and experimentally 

validated. It provides improved heat transfer over passive systems such as the loop heat pipe in 

the moderate to high heat flux range and can be a sustainable alternative to active systems as it 

does not require an electric pump. This work details the components of the engineering 

prototype and characterizes their performance through the application of compressible and two-

phase flow theory. A custom LabVIEW application was utilized for data acquisition and 

control. During operation with refrigerant R-134a the system was shown to be robust under a 

range of heat loads from 100 W to 800 W. Operation was achieved with driving pressure 

differentials ranging from 3 bar to 12 bar and pulse frequencies ranging from 0.42 Hz to 

0.08 Hz. A smaller pressure differential and an increased pulse frequency results in improved 

heat transfer at the boilers. 

 

An evolution of the PTL is proposed that incorporates a novel, ejector-based pump-free 

refrigeration system. The design of the pulse refrigeration system (PRS) features valves at the 

outlet of two PTL-like boilers that are alternately actuated to direct pulses of refrigerant through 

an ejector. This is intended to entrain and raise the pressure of a secondary stream of refrigerant 

from the cooling loop, thereby replacing the compressor in a conventional vapor-compression 

cycle. The PRS is therefore characterized by transient flow through the ejector. An experimental 

prototype has been constructed which is able to operate as a conventional PTL when the cooling 

section is bypassed, although full operation of the refrigeration loop remains to be 

demonstrated. The design of the ejector is carried out using a one-dimensional model 

implemented in MATLAB that accounts for compressibility effects with NIST REFPROP vapor 

data sub-routines. The model enables the analysis of ejector performance in response to a 

transient pressure wave at the primary inlet.  

 

The high driving pressures provided by the PTL permit operation in a micro-gravity 

environment with minimal power consumption. Like the PTL, the proposed PRS is therefore 

well suited to terrestrial and aerospace applications where it could be driven by waste heat from 

electronics or solar thermal energy. As a novel semi-passive thermal management system, it will 

require complex control of the valves. Further analysis of the transient thermodynamic cycle is 

necessary in order to characterize and effect successful operation of the PRS. 
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1 INTRODUCTION 

Spacecraft thermal management systems (TMS) are vital for the success of any mission. They 

maintain temperature sensitive equipment within safe operating margins, even when subjected 

to the extreme fluctuations from -200°C to +200°C that can occur in space [1]. In this study, two 

systems are investigated that could provide engineers with alternate cooling options for future 

spacecraft. These are a semi-passive two-phase pulse thermal loop and an ejector-based pulse 

refrigeration system. Both are powered by a low-grade heat source and could find terrestrial 

application as sustainable alternatives to mechanically-pumped cycles. 

1.1 The pulse thermal loop 

The pulse thermal loop (PTL) is an oscillatory heat transport system that may be a viable 

solution for future spacecraft thermal control. Advances in spacecraft design utilizing 

sophisticated batteries and electronics are leading towards smaller vehicles with increasing 

capabilities. The cooling requirements continue to expand, necessitating innovative TMS that 

are generally tailored for each application. These systems must be designed to comply with the 

heat flux requirements, weight and volume limitations, and the available electrical power of the 

spacecraft. 

 

The PTL combines the benefits of both passive and active cooling technologies. Passive 

technologies (including thermosyphons and heat pipes) are well suited to small scale systems 

and continue to meet the cooling requirements at progressively larger heat loads. Active 

technologies (including mechanically-pumped loops) are well suited to large scale systems and 

continue to meet the cooling requirements at progressively smaller heat loads [2]. The PTL was 

proposed by Weislogel [3] in response to the need for a lightweight satellite cooling system that 

falls between these limits, having better performance than passive systems and less complexity 

than active systems. The PTL is therefore suitable for niche applications where passive systems 

are heat flux - or heat transport – limited, or where active systems are weight - or power draw - 

limited. 

 

The PTL concept is relatively new and there is potential for improvement on the system design 

and operation. This study expands on previous work in which an experimental PTL was 

constructed but not adequately tested. A laboratory scale PTL is designed including revised 

boilers, valves, condenser, control hardware and a custom control application with data 

acquisition. Unique to this effort are the boilers which are twice as large as previous versions by 

Brooks et al. [4,5], and incorporate large borosilicate sight glass windows to enable flow 



2 

 

visualization. Performance is characterized through experimental testing over a range of 

operating conditions, including variable power (Q), pulse frequency (f) and differential driving 

pressure (∆P) between each boiler chamber and the condenser. 

 

The PTL research objectives include: 

 Establishing thermal design requirements or constraints 

 Developing an engineering prototype PTL, with large thermally coupled boilers which 

are powered by cartridge heaters  

 Incorporation of sight glass windows in the boilers for visual inspection 

 Developing a custom data acquisition and control application using NI LabVIEW 

software 

 Benchmarking the PTL against previous prototypes 

 

The PTL is intended for use as a TMS on board spacecraft but there are potential terrestrial 

applications for the technology. In this work an evolution of the PTL is proposed that 

incorporates a novel, ejector-based pump-free pulse refrigeration system, or PRS [4].  

1.2 The pulse refrigeration system 

The proposed pulse refrigeration system (PRS) is a development of the PTL that aims to provide 

refrigeration without requiring a compressor. It is powered by low grade waste heat or solar 

thermal energy resulting in a cost effective and sustainable alternative to conventional 

mechanically-pumped cooling systems. It is suitable for both terrestrial and space applications 

provided there is a heat source that can be exploited. The PRS concept has not been 

experimentally demonstrated and requires the construction and testing of a novel engineering 

prototype. This includes a redesign of the PTL to include a cooling loop incorporating an ejector 

and an expansion valve. 

 

The ejector (also known as a jet pump or a thermo-compressor) is critical to the functioning of 

the PRS. It has no moving parts, is intended to entrain and compress a secondary fluid and its 

performance can be described using compressible flow theory. It is designed to operate under 

steady state conditions, however, is highly inefficient during transients. The ejector in the PRS 

receives transient pulses of refrigerant at its primary inlet from PTL-like boilers and is expected 

to operate inefficiently for most of the cycle. 

 

The design and performance of the PRS ejector is analyzed using two one-dimensional 

(axisymmetric) models implemented in MATLAB. These two-phase models take 
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compressibility effects into account with NIST REFPROP vapor data sub-routines. A novel 

aspect of this work is that the quasi-steady performance model enables an analytical method of 

determining ejector transient operating modes in response to a varying back pressure ratio (PR) 

across the inlet nozzle. To the author’s knowledge, this is the first such analytical transient 

ejector model to be published. 

 

A PRS experimental prototype is constructed from the PTL components and is tested. It is able 

to operate as a conventional PTL when the ejector-based cooling section is bypassed, however, 

attempts to operate the PRS as a refrigeration device were unsuccessful due to the ejector not 

functioning as intended since the ∆P rapidly reduced to zero, limiting entrainment. This aspect 

of the work remains to be demonstrated. 

 

The PRS research objectives include: 

 Evaluation of the additional components required to convert a PTL to a PRS 

 Investigation of various ejector flow theories and designs 

 Modeling of the ejector in MATLAB for the unique transient operating conditions 

 Design of an optimal ejector for use in the PRS 

 Evaluation of the PRS concept through a testing program 

 

Refinement of the PTL and PRS would broaden the options available to spacecraft TMS design 

engineers. Terrestrial applications are also of interest as these systems could provide a 

sustainable alternative to the well established mechanically-pumped cooling cycles. The PTL is 

suitable for replacing the heat pipes on central processing units (CPUs) or it can be used to 

manage the waste heat of industrial equipment to improve thermal efficiencies and reduce 

failures due to overheating. The PRS would be suited to providing refrigeration in off-grid or 

mid-latitude sunny regions where solar radiation can be exploited. 

 

Structure of this dissertation 

 

A review focusing on spacecraft thermal management systems is presented in Chapter 2. It 

provides an overview of the history and relevance of spacecraft temperature control, the various 

technologies currently available, as well as emerging technologies. This includes the 

development of the PTL and the PRS. Their terrestrial applications are also discussed.  

 

A new PTL design is detailed in Chapter 3, incorporating thermally coupled boilers, large sight 

glass windows and a counter-flow concentric tub heat exchanger. The heat exchanger design is 
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based on a simplified analytical model implemented in MATLAB. 

 

The custom LabVIEW control application is discussed in Chapter 4. This includes the hardware, 

software and logic.  

 

The PTL experimental results are discussed in Chapter 5. Various nominal and off-nominal 

results are discussed and the performance of the system is mapped. The results are compared 

with data obtained from previous variants demonstrated by Weislogel et al. [2] and Brooks et al. 

[4]. 

 

Chapter 6 presents the design of the additional components required in the PRS, with focus on 

the ejector. Two ejector models are described including a steady state design model and a 

transient performance model. The models are validated and used to investigate the design and 

performance of an ejector for the PRS. Experimental attempts at operating a PRS that 

incorporates a commercial ejector are presented.  

 

The research conclusions are described in Chapter 7. Recommendations are made for further 

research into both the PTL and the PRS. The Appendices follow including tables, calculations, 

design drawings, MATLAB codes, description of the LabVIEW control application and 

experimental video footage. 
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2 REVIEW OF SPACECRAFT AND TERRESTRIAL 

THERMAL MANAGEMENT 

Thermal management is required for all spacecraft from simple satellites to complex manned 

space vehicles. A TMS is responsible for maintaining equipment within safe temperature limits 

and, in manned vehicles, for controlling cabin temperature for human survivability. In this 

chapter, various thermal control technologies are discussed, including systems that have flown 

on previous missions, and novel cycles that could be developed for future spacecraft or 

terrestrial applications, including the PTL and the PRS. 

2.1 The space environment 

The space environment ranges from low Earth orbits to the gravity-free expanses between 

celestial objects. Extreme thermal loads on a vehicle result from its position and orientation with 

respect to nearby planets and the Sun as well as waste heat generated from onboard equipment. 

This can cause degradation of materials and failure of the spacecraft structure and sub-systems.  

 

Environmental heat loads on Earth-orbiting satellites include direct sunlight, reflected sunlight 

off of the Earth (albedo) and infrared (IR) energy emitted from the Earth [6]. Direct sunlight 

intensity is the largest environmental heat source, which at the Earth’s mean distance from the 

Sun (1 AU) is 1367 W/m
2
 [6,1]. An orbit usually includes periods of eclipse, resulting in 

temperature fluctuations on the outside of a spacecraft ranging from -200°C to +200°C, and 

equipment inside the spacecraft ranging from -130°C to +100°C [1]. In addition, the spacecraft 

generates heat at high heat flux densities from the propulsion systems, electronics and battery 

packs. The thermal loads must be dissipated through a TMS to keep sensitive equipment within 

their operating temperature range. Typically electronics must be maintained between -20°C and 

50°C, batteries between 0°C and 20°C, and various mechanisms such as solar array drives and 

attitude control components between 0°C and 50°C [6,4]. 

2.2 History of spacecraft thermal management 

Careful consideration of thermal control is evident with the earliest spacecraft. Passive and 

active technologies (described in section 2.5) have been employed from the start of the space 

age and have evolved as the cooling requirements have increased with mission capabilities. 

 

Prosteishy Sputnik (or Sputnik-1) was the first artificial satellite to be launched into space 

in 1957. The sphere measured 585 mm in diameter with a mass of 83.6 kg [7]. It employed a 

combination of passive and active thermal control. The top hemisphere was coated with a 1 mm 
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thick passive thermal protective layer. The temperature inside the sphere was actively 

maintained between 23°C and 30°C by controlling a fan that circulated nitrogen gas. Sputnik-3 

(or Object-D) was launched in 1958 and included 16 active louvered shutters which were 

controlled to alter the radiation view factor of the external heat exchanger [8]. 

 

America’s first satellite, Explorer-1, was launched after Sputnik-1 in 1958. It was superior in 

many ways, especially in its operational life. Its success was largely due to the passive (power-

free) TMS that it employed. White and dark green stripes were painted on the outer surface of 

the instrument section and the vehicle was spun along its longitudinal axis, evenly distributing 

heat [9]. The Gemini spacecraft (launched from 1964 to 1966) had a thermal control system that 

provided life support for two astronauts [10]. It was able to dissipate heat at three times the rate 

of the thermal control system used on the earlier Mercury spacecraft (1961 to 1963). It included 

advanced coatings and an active fluid cooling system (using a positive displacement pump) for 

regulating the temperature of the cabin, astronauts’ suits and equipment. The 165 ft
2
 outer 

surface of the docking adapter module doubled as a radiator to space. The space shuttle orbiter 

was flown from 1981 to 2012 and made use of an active liquid cooling TMS [6]. Heat was 

collected from the cabin, fuel cell, hydraulics, ground support equipment, and payload heat 

exchangers, and radiated to space. 

 

Cassini was launched in 1997 to probe Saturn and its moons, and is still in operation today. The 

TMS includes multi-layer insulation, reflective louvers and heat exchangers. It is designed to 

dissipate 700 W of waste heat from electronics in order to maintain them between 5°C and 50°C 

[11]. In the same year of Cassini’s launch, the Mars Pathfinder landed on the Martian surface. It 

was the first American satellite to use an actively pumped-liquid TMS [6] using refrigerant R-

11. It made use of a centrifugal pump (with a pressure rise of 0.3 bar) requiring 10 W of 

electrical power to provide 90 W to 180 W of cooling power [12]. 

 

The international space station (ISS) assembly began in 1998. It makes use of an actively 

pumped single-phase cooling system for thermal control [13]. The inside of the spacecraft is 

cooled using water heat exchangers, to provide a habitable atmosphere for humans. The internal 

heat is exchanged with two liquid ammonia loops that are circulated externally through 

deployed aluminum radiators. Ammonia, having a freezing point of -77°C, is necessary since 

water would otherwise freeze in the external pipes. Ammonia is not used in the internal cooling 

loop as a leak would endanger crew members. Reliability of pumped devices is of concern, as 

evidenced by the failure that occurred in 2010 which required two spacewalks, or EVAs, to 

swap out the pump unit [14]. 
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It is evident that spacecraft require varied levels of thermal control, that thermal management is 

a rapidly evolving field, and that there are numerous options available to designers. 

2.3 Future missions 

Future missions will provide new science and observational capabilities as technologies evolve. 

Improved capabilities require greater power requirements and pointing accuracy, improved 

instrument resolution and thermal control. The demand on engineering sub-systems will 

increase in order for spacecraft to operate in more challenging environments with improved 

performance. 

 

Conventional TMS including multi-layer insulation, coatings, louvers and heat pipes are already 

becoming inadequate for today’s spacecraft [6]. Newly developed two-phase systems and long-

life mechanical pumps have been implemented on recently launched spacecraft (e.g. high-

powered communication satellites, Mars Pathfinder, Mars Exploration Rovers, Swift, and 

ICESat) to meet the growing mission requirements [6].  

 

Ambitious missions of the future (including the establishment of lunar and Mars bases) require 

continued innovation and development of the thermal control subsystems whilst decreasing the 

size and weight of the TMS. The two-phase, oscillatory heat-transport cycles described in this 

study could find application terrestrially or on future spacecraft. 

2.4 Technology drivers 

Spacecraft technology drivers include increasing capabilities and operational life, reducing 

power consumption, working in challenging space environments, decreasing the weight of 

equipment, and adapting systems for terrestrial application. These are achieved through the 

development of modern materials, coatings, electronics, novel structures, renewable power 

generation, and minimizing the size and weight of components. Miniaturization of power 

devices generates increased heat flux densities relative to the size and weight of the spacecraft.  

 

One of the greatest opportunities for TMS weight savings lies in the development of lightweight 

composite materials and pumped phase-change fluid cycles. Examples of modern composites 

include K1100 and P-140 fibers which have been developed as alternative thermal conductors to 

copper and aluminum. The thermal conductivity of K1100 fibers is 1100 W/m.K, which is three 

times that of copper at one-quarter the density [6]. Such composites can be integrated into 

electronic circuit-board enclosures and structural heat sinks. They are, however, ineffective at 

transporting heat loads to a heat sink that is some distance away from the heat source. In 
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comparison, pumped phase-change fluid cycles can transport large amounts of heat from a 

source to a sink. 

 

Developing these technologies will ultimately reduce spacecraft weight and minimize launch 

costs, or allow for a larger payload. 

2.5 Types of thermal management systems 

TMS can be divided into two categories: passive and active technologies [1,15]. 

2.5.1 Passive technologies 

Passive thermal technologies include materials, coatings, insulation, radiating heat fins, sun 

shields, and heat pipes [6]. They are suited to relatively small scale heat loads at low heat flux 

densities in comparison to active technologies. The flow of thermal energy can be controlled by 

conductive and radiative heat paths of materials, coatings, and insulations to achieve a desired 

thermal balance. Heat pipes use a phase-change fluid to regulate the temperature of components. 

In some texts they are considered as active technologies as they employ a working fluid. They 

can, however, be categorized as passive as they do not require a mechanical pump to drive the 

flow, and operate without electrical power. 

 

Various heat pipes include constant conductance heat pipes, one-way or diode heat pipes, 

variable conductance heat pipes, capillary-pumped loops (CPLs), and loop heat pipes 

(LHPs) [6]. They all transport heat over a distance from an evaporator to a condenser (or 

radiator), exploiting the latent heat of phase change. Fluid is pumped back to the evaporator by 

capillary action of a wick structure. They are suited to small scale systems as they are able to 

transfer large amounts of heat without the use of electrical power, are more reliable, and have 

less weight in comparison to active technologies. Passive heat pipes are however limited in 

driving pressure, heat flux capability and microgravity sensitivity due to their weak capillary 

forces (typically less than 0.7 bar [16,2]). This constrains the radiator design since the fluid 

channels cannot be reduced in size. Smaller tubes increase the viscous pressure drop beyond the 

capillary pump capacity of the loop [4].  

 

i) Constant conductance heat pipe 

 

Operation of a horizontal tube constant conductance heat pipe is shown in Figure 2.1. It consists 

of a simple tube with a wick structure annulus. The cycle operates when there is a small 

temperature difference between the evaporator and the condenser. A phase-change working 
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fluid absorbs heat in the evaporator section and is evaporated out of the wick. The vapor flows 

to the condenser where heat is rejected and the fluid condenses back into the wick structure. The 

condensed liquid is then pumped by weak capillary forces generated in the wick to replenish the 

evaporator section of the tube. 

 

 

 

 

 

 

 

 

Figure 2.1 Schematic of a simple constant conductance heat pipe. 

ii) Capillary-pumped loop (CPL) 

 

Similar to a heat pipe, the CPL operates by absorbing heat at an evaporator through evaporating 

a phase-change fluid, and rejecting heat at a condenser through condensation. The key 

differences are that the wick structure in a CPL is located in the evaporator section only, and the 

condenser can be placed at some distance away from the evaporator. There is no wick in the 

transport tubes or the condenser. A CPL can also have multiple evaporators and condensers. 

 

A typical single-stage CPL is shown in Figure 2.2. The loop functions when the condenser is at 

a lower temperature than the evaporator. A porous wick (typically high-density polyethylene) is 

situated in the evaporator and is saturated with liquid. As heat is applied, the liquid at the outer 

surface of the wick evaporates and the slightly superheated vapor moves to the condenser where 

it is condensed and slightly subcooled. The driving pressure due to the capillary action at the 

wick returns the subcooled liquid to the evaporator core. Capillary forces draw fluid in radially 

from the liquid core into the pores of the wick. A CPL also includes a reservoir that is connected 

to the liquid line through a small diameter tube. The reservoir contains saturated working fluid 

(liquid and vapor) at the set loop pressure (and temperature). A small heater is required to 

maintain the reservoir temperature which controls the CPL set-point. 

 

CPLs are capable of pumping fluid with up to 3 m head against terrestrial gravity depending on 

the flow geometry and the wick structure [17]. They cannot function in an adverse gravity 

environment, such as during launch acceleration. 

 

Evaporator Transportation section Condenser 

Vapor flow 

Liquid Flow 

Heat in Heat out 

Capillary wick 

Heat pipe wall 
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Figure 2.2 Schematic of a capillary pumped loop (CPL) [17]. Loop operation is limited to 

the pump capacity of the capillary wick. 

iii) Loop heat pipe (LHP) 

 

An LHP is similar in design to a CPL but has an in-line compensation chamber (CC) coupled to 

the evaporator inlet, rather than an external reservoir. The CC may sometimes contain a weaker 

secondary wick (with different properties to the primary evaporator wick) to improve 

performance [6]. Excess fluid is stored in the CC before being drawn in to the wick by capillary 

force. The basic configuration is shown in Figure 2.3. The wick performs the same capillary 

pump action as with a CPL. 

 

Two-phase systems generally require some form of pre-conditioning before start-up. The wick 

and vapor line of a CPL must first be flooded with liquid by heating the reservoir 5°C to 15°C 

above the evaporator temperature [6]. In contrast, an LHP traditionally requires less pre-

conditioning. When sufficient heat is applied at the evaporator a threshold temperature gradient 

across the wick (between the evaporator and the CC) results in a pressure difference initiating 

circulation. For both CPLs and LHPs, start-up can be assisted by using a starter heater at the 

evaporator to maximize heat flux. An LHP is considered to be the more robust of the two. If a 

CPL has inadequate subcooling, it will deprime (or dry-out). If an LHP has inadequate 

subcooling, the operating temperature will increase to create sufficient subcooling. Both cycles 

are unable to cool the evaporator to temperatures below that of the condenser. 
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Figure 2.3 Schematic of a loop heat pipe (LHP) [6]. The design is similar to a CPL other 

than the CC that is incorporated before the evaporator. 

CPLs and LHPs have flown on numerous missions with NASA, the European Space Agency 

(ESA), and the Russian Federal Space Agency. They have become the baseline thermal-control 

technology for spacecraft. They offer performance advantages over other heat pipes including 

longer heat transport distances which allow for complicated layouts of the transport tubing, and 

increased heat transfer capability. They have been demonstrated to transport from 20 W to 

24 kW of thermal energy [6]. 

2.5.2 Active technologies 

Active thermal technologies include heaters, louvers and mechanically-pumped loops (typically 

single-phase) [6]. They are well suited for relatively high heat loads at high heat flux densities 

in comparison to passive technologies. Louvers are mechanically operated blinds placed on the 

outside of a spacecraft to modulate the radiation heat transfer to space by opening and closing. 

A mechanically-pumped system uses a feedpump or compressor to generate fluid flow in a loop. 

 

i) Single-phase mechanically-pumped loop 

 

A single-phase pumped fluid loop can transport moderate to large amounts of thermal energy 

(100 W to 1000 W) through forced liquid convective cooling, over long transport distances [6]. 

This is due to the high mass flow rate achieved through using an electric pump. Increased pump 
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pressure enables the use of smaller tubes, which offer an improved strength-to-weight ratio and 

are especially important in preventing system failure due to micro-meteor strikes. 

 

A simplified schematic is shown in Figure 2.4. The loop consists of a feedpump, a heat 

exchanger where heat is absorbed, and a space radiator where heat is rejected. Like the CPL or 

LHP, the cycle is unable to cool the evaporator to temperatures below that of the radiator. In 

comparison to heat pipes the disadvantages include increased power consumption, weight, size, 

cost, and mechanical complexity. A disadvantage inherent to single-phase systems is that the 

fluid temperature at the evaporator is highly variable and depends on the heat load.  

 

 

 

 

 

 

 

 

 

 

Figure 2.4 Schematic of a mechanically-pumped fluid loop. 

ii) Two-phase pumped loops 

 

Typical Earth-based vapor-compression refrigeration (VCR) cycles enable refrigeration at 

temperatures below that of the condenser. They are power-intensive, difficult to operate in a 

gravity-free environment, and have seen little or no use in space [15]. 

 

Two-phase pumped loops are particularly attractive for future spacecraft as they enable smaller 

transport tubes, less working fluid and less pumping power in comparison to single-phase 

systems. The evaporative heat transfer allows for isothermal cooling of equipment experiencing 

variable heat loads. 

 

There is potential for the development of alternate two-phase cycles that are not limited by 

condenser temperature or the use of a compressor to drive the flow. Ejector cooling systems 

(ECS) make use of an ejector rather than a mechanical compressor in the vapor-compression 

part of the cycle, providing two-phase cooling with reduced power consumption. 
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2.5.3 Niche area of research 

Weislogel [18] conceptualized a map of heat pipe and mechanically-pumped loop applications 

in terms of non-dimensional heat transfer and heat flux density requirements, presented in 

Figure 2.5.  The unshaded region represents applications where heat pipes are incapable due to 

pool boiling heat flux limitations and mechanically-pumped systems have unacceptable weight, 

size, and complexity. Also, miniaturization of mechanically-pumped systems is uneconomical. 

An example would be for the cooling of high-powered electronics where small scale and high 

thermal conductance is required without the cost of a mechanical pump. 

 

 

 

 

 

 

 

 

Figure 2.5 Conceptual map of thermal control system applications showing niche research 

area [18] for where the PTL and the PRS are being developed.  

To address this gap researchers are developing passive and active two-phase systems including 

novel heat pipe designs and ejector-based vapor-compression systems. It is in this region where 

novel two-phase concepts such as the semi-passive PTL and the PRS find potential application. 

In the context of this study, semi-passive refers to a system which does not require a pump or 

external power supply, but does include valves with moving parts.  

2.6 Pulse thermal loop (PTL) review 

The PTL is a semi-passive oscillatory heat transport cycle. It makes use of multiple constant 

volume boilers that exploit waste heat to generate two-phase flow. This relatively new concept 

requires further development before it can find commercial application. 

2.6.1 PTL cycle description 

The basic components of a PTL include two or more constant volume boilers, a radiator or 

condenser, transport tubing, flow control valves and a two-phase working fluid. A simple 

schematic is shown in Figure 2.6, but there are conceivably many variations possible. Each 

boiler is fitted with check-valves at the inlet and shut-off valves (solenoid or actuated ball 
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valves) at the exit. This ensures one-way flow around the loop. Heat is supplied to the boilers 

and rejected at the condenser. The valves at the boiler exits toggle to alternately couple each 

chamber to the low pressure condenser, thereby isolating each one in turn. This sequentially 

pressurizes and pulses (forces) the working fluid around the loop. Saturated fluid in the liquid 

return line (LRL) flows through a check-valve into the isolated (empty) boiler because, for a 

brief period just after an emitted pulse, the isolated boiler’s pressure is lower than the loop’s 

pressure. The isolated boiler pressurizes whilst the alternate boiler, open to the condenser, 

depressurizes due to expansion and condensation. The resulting cycle is therefore characterized 

by steady, periodic, non-equilibrium evaporation and condensation processes. A control scheme 

monitors the absolute pressure differential, ∆P, between the boilers and activates the valves 

when a predetermined value, ∆Pset, is reached. Passive valves, such as diaphragm controlled 

valves, can be employed to enable power-free operation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6 Schematic of the pulse thermal loop [3]. Heat is transferred from the source to 

the sink by sequentially isolating, pressurizing and pulsing refrigerant around the loop using 

multiple boilers. 

One complete PTL cycle consists of two pulses that include seven steps. This is described with 

the aid of Figure 2.7. For simplicity the PTL schematics include a 3-way control valve at the 

outlet of the boilers rather than using two two-way valves. The characteristic pressure trace of 

the two boilers is shown to aid in the description of the seven steps. The pulses are initially at a 

high pressure (peaks of P1 and P2) and dissipate to the lower condenser pressure (troughs of P1 

and P2). A pulse period consists of two pulses that are 90° out of phase. The oscillatory pulsing 

is maintained as long as heat is supplied to the boilers. This has been demonstrated with the 

cycle operating at steady state for up to 60 hours [3]. 
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Figure 2.7 Upper diagrams (a, b, c and d) describe PTL operation. The lower graph (e) 

shows a typical experimental pressure trace of a PTL operating with ∆Pset of 10 bar. 
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(c) Boiler 2 is sealed, contains refrigerant, and 

is pressurizing. Boiler 1 is open to the 

condenser and is depressurizing. (Step 5) 
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Variations in the PTL design include multiple stacked boilers which could be thermally isolated 

or coupled, different size and types of condensers, different diameter and lengths of transport 

tubing, different valve technologies for controlling the flow (check valves, shut-off valves, 2-

way valves and 3-way valves, diaphragm valves), and different control schemes (frequency 

control, temperature control and pressure control). The performance of the PTL is affected by 

the variations in the system design, heat input (Q), condenser temperature (TW1), driving 

pressure differential (∆P), pulse frequency (f), thermophysical fluid properties, refrigerant 

charge vapor fraction (x), and mass distribution.  

 

The PTL cycle meets the requirements of the niche area identified in Figure 2.5. The high 

driving pressures coupled with exploiting the latent heat of phase-change enables the use of 

small tubes and can result in significant spacecraft weight savings, especially with the radiator. 

Spacecraft radiators are often the largest/heaviest part of the TMS weighing as much as 

12 kg/m
2
 for deployable types [6]. 

2.6.2 PTL advantages 

The PTL offers advantages over passive heat pipes and mechanically-pumped loops which 

make it suitable for advanced thermal control applications. In Table A.1, Appendix A, a non-

dimensional comparison between the PTL and conventional thermal management technologies 

is made in terms of heat flux, transport distances, gravity independence and power consumption. 

 

There are two major benefits of a PTL [16]: 

1. The PTL is not limited by a wick structure. Unlike a CPL or an LHP, there is greater 

flexibility in designing for larger systems with increased thermal capacity and transport 

distances. The increased ∆P reduces the impact of tube lengths and fittings, and enables 

operation in adverse gravity environments. They are able to operate at increased heat 

flux densities as they are not limited by nucleate pool boiling or weak capillary forces. 

2. The PTL is pump-free. It requires fewer moving parts and near zero power consumption 

whilst being able to generate similar ∆P to that of a mechanically-pumped loop. A PTL 

can transport approximately 25% heat in comparison to a pumped loop having the same 

∆P. (i.e. A PTL operating with a ∆Pset of 12 bar will be able to transfer the same heat as 

a mechanically-pumped loop operating at 3 bar.) 

 

The main disadvantage of a PTL is difficulty in predicting the performance and reliability of 

operation. This study increases the data base which maps the performance of the PTL, for a 

range of operating conditions. Reliability is closely related to the valves employed. Check 
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valves and electrically powered solenoid valves have been used in previous examples, which 

were sometimes unable to achieve symmetric pulsing [16]. This could be due to uneven 

calibration or internal leaking of the valves. Also, the solenoid valves here are electrically 

powered. The loop can be configured to require no auxiliary power by using diaphragm 

operated 3-way valves with hysteresis [2], but requires further investigation. 

2.6.3 PTL development history 

The PTL was initially conceived and patented by Weislogel at NASA’s Lewis Research Centre 

in 1992 [3]. The patent became public domain in 1995. Weislogel, Hitch and Bacich continued 

development of the PTL in 1998 with an analytical system model and demonstrated the loop’s 

capabilities using refrigerant R-134a [2,16,3]. Their last publication was in 2004, but PTL 

development at TDA Research Inc. appears to be ongoing [19]. Brooks and du Clou 

commenced PTL research in 2007 and 2008 respectively [4,5]. A summary of various 

prototypes developed to date is presented in Table A.2 of Appendix A. 

 

By 1998 over 700 hours of operation were logged. Long duration steady states (up to 50 hours) 

with a range of heat rates (400 W to 2100 W), local heat flux densities (1.18 W/cm
2
 to 

16 W/cm
2
), and ∆Pset (1 bar to 12.4 bar) were demonstrated [3]. Four experimental prototypes 

were developed: 

 

1. Thermally decoupled 7/8” ID by 254 mm long copper evaporators (boilers) having a 

volume of 98 cm
3
 each, with a large condenser, and 3/16” ID copper transport tubing, 

photographed in Figure 2.8. Flow restrictors with different coefficients (Cv-values) 

simulated increased tube lengths without changing the flow quality. 

2. Thermally coupled 3/4” ID by 318 mm long copper boilers with a volume of 90 cm
3
 

each, and a small condenser. 

3. Design #2, with 55 cm
3
 vapor reservoirs giving a total volume of 145 cm

3
 per boiler, 

and a small condenser.  

4. Design #3 with a large condenser.  

 

In designs 3 and 4, vapor reservoirs are included to reduce the loop pulse frequency (f). The 

lower f enables improved data acquisition and solenoid valve control but reduces the 

performance. The principal dependant variables were identified as frequency (f) and the mean 

saturation pressure and temperature of the working fluid. Independent variables include heat 

input (Q), condenser temperature (TB), driving pressure differential (∆Pset), volume ratios of the 

components with respect to the boiler, charge vapor quality (x), flow resistance and the type of 
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working fluid. It was experimentally determined that the loop must be charged with sufficient 

refrigerant such that the vapor fraction (x) at 20°C is in the range of 0.6 < x < 0.8. 

 

 

 

 

 

 

 

 

 

Figure 2.8 Top view photograph of Weislogel’s prototype PTL #1 [3]. The design includes 

two thermally decoupled constant volume evaporators, a 3-way valve, a condenser, flow 

restrictors and check valves. 

The PTL can be scaled to transfer a range of heat loads from 10 W to 100 kW (up to 10-times 

greater than high performance heat pipes) [16]. It can transfer up to 129 W/cm
2
 if ammonia is 

used as the working fluid [2]. This is a 30-fold improvement over comparably sized CPLs. The 

use of ammonia would also enable increased ∆Pset of up to 18 bar. Increased ∆Pset allows for 

even longer transport distances, through smaller tube diameters and operation in adverse gravity 

environments (i.e. under launch accelerations). The PTL can find terrestrial application for high 

end electronics cooling or industrial scale thermal management. 

 

By 2004 over 15 PTL variants had been built logging over 10000 hours of operation, with 

individual tests lasting up to 500 hours [16,2]. Horizontal and vertical designs were investigated 

employing counter-flow and parallel-flow condensers. A number of working fluids have been 

tested including water, methanol, R-134a, R-410a and ammonia. Heat rates ranging from 25 W 

to 2330 W with ∆Pset ranging from 0.5 bar to 18 bar have been demonstrated. Condenser 

temperatures were varied from 5°C to 25°C, with minimal effect on pulse frequencies (f) for 

∆Pset above 3 bar. The PTL operating window (∆Pset vs. f) was investigated using different 

charge levels with x ranging from 0.63 to 0.73. A lower charge mass (increased x) enables 

operation at lower ∆Pset, decreased system mean pressure, and increased f, but with greater 

variance in the boiler temperatures. A 10 cm
3
 micro-pulsed thermal loop (MPTL), pictured in 

Figure 2.9, was developed but not demonstrated [20]. The loop is constructed of 1.17 mm ID 

tubing having two 3.5 cm
3
 serpentine evaporators, and is charged with less than 3 ml of R-134a. 

The heat transfer capacity is predicted to be in the range of 5W to 200 W. 
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Figure 2.9 Micro-PTL [20]. This 10 cm
3
 PTL includes two 3.5 cm

3
 evaporators and is 

predicted to transfer up to 200 W of thermal energy. 

At the University of KwaZulu-Natal (UKZN), Brooks et al. [4] constructed a PTL in 2007 to 

validate the concept and investigate different control schemes. The experimental prototype 

(Figure 2.10) included two thermally decoupled 31.5 cm
3
 boilers, 4.55 mm ID transport tubing, 

a 39.2 cm
3
 condenser, and R-134a as the working fluid. Greater detail is provided in Table A.2 

of Appendix A. The loop operated with ∆Pset ranging from 4 bar to 8 bar (limited by valve 

constraints) and power inputs ranging from 400 W to 800 W. The system was unable to operate 

at pressures below 3 bar but the cycle pressure trace was prone to asymmetry. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.10 PTL developed by Brooks et al. [4] consisting of two thermally decoupled 

boilers. The loop is capable of dissipating heat up to 800 W with ∆Pset up to 8 bar. 
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Four methods of controlling the PTL were investigated including frequency control, ∆P control, 

absolute pressure control and hybrid control (combined ∆P and absolute pressure control). 

Stable operation is best achieved using the ∆P method of control. This is the same method 

employed by Weislogel and Bacich [16]. With this method, a software algorithm monitors the 

pressures at the two boilers and actuates the outlet valves when the absolute ∆P reaches a set 

value, ∆Pset. Operation is the same as described in Figure. 2.7. 

 

The potential applications of the PTL have not yet been fully realized. Thermodynamically 

speaking, it is a heat engine where the work output is used to circulate refrigerant. One can 

imagine utilizing a PTL as a heat-driven pump to replace a conventional electrically-driven 

pump in a loop. Brooks et al. [4] proposed a novel ejector-based pulse refrigeration system 

(PRS) that makes use of PTL-like boilers to pump refrigerant around a cooling loop. 

 

In 2008 a revised PTL including two thermally coupled 36 cm
3
 boilers, was constructed and 

tested (Figure 2.11) [5]. This PTL included the components required to test the PRS concept. 

Although the PTL performance was an improvement on the previous version, the PRS concept 

could not be demonstrated due to excessive pressure drops that limited circulation. The PTL 

(outer loop in the figure) enabled heat transfer from 80 W to 150 W with ∆Pset ranging from 

3 bar to 8 bar. The system was prone to asymmetry with respect to the cyclic boiler pressure 

histories. It was determined that asymmetry may not only be caused by thermally decoupled 

boilers (as was the case in 2007), but also by the quality of the valves employed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.11 PTL developed by du Clou et al. [21]. The inner loop included the components 

required to test the PRS concept, but this was not demonstrated. 
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2.7 Pulse refrigeration system (PRS) review 

The present study aimed to develop the PTL into a new type of refrigeration system, the PRS. 

The PRS combines the PTL-pump with an ejector-based cooling system (ECS) to provide 

pump-free heat-driven refrigeration (shown in Figure 2.11 and Figure 2.14). More detail 

regarding the PRS is described below and in Chapter 6. Many researchers have investigated 

ECS with particular focus on the ejector design. An ECS is principally similar to conventional 

vapor-compression refrigeration (VCR), except that the compressor is replaced with an ejector, 

a boiler and a low energy feedpump. The PRS proposed here eliminates the pump required in 

the ECS and competes with compressor-driven cycles, conventional ECS, thermoelectrics 

(Peltiers) and absorption cycles [22]. 

2.7.1 Vapor-compression refrigeration 

Most refrigeration cycles are thermodynamically similar to the compressor-driven VCR cycle in 

Figure 2.12. The cycle includes an evaporator, a condenser, a compressor, and an expansion 

valve. The condenser and the evaporator are isobaric heat exchanging devices. 

 

The typical thermodynamic cycle is sketched on the temperature-entropy diagram in Figure 

2.13. Refrigerant is pumped out of the condenser as a saturated liquid at point 4 and passes 

through an irreversible expansion/throttle valve in process 4-5. Adiabatic flash evaporation 

lowers the temperature of the refrigerant resulting in a two-phase mixture. Heat is transferred 

from the cold space to the evaporator during process 5-1, vaporizing the liquid fraction of the 

refrigerant at constant pressure to give saturated vapor. Note that the evaporator operates at a 

lower temperature than the condenser. The refrigerant then passes through an electrically driven 

compressor, in process 1-2, which compresses the refrigerant to a superheated vapor. The 

condenser removes the superheat by cooling the vapor in the isobaric process 2-3, and 

condensing it to saturated liquid in process 3-4. A great amount of energy is associated with the 

phase change of the working fluid which enables heat to be absorbed at the evaporator to 

achieve the cooling effect [23]. The coefficient of performance (COP) is defined as the ratio of 

the heat removed from the cold space (Qin) to the work input, Equation 2.1. 

 

    
   

   
  

   
          
     (2.1) 
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Figure 2.12 Schematic of a compressor-driven vapor-compression refrigeration system. 

 

 

 

 

 

 

 

 

 

 

Figure 2.13 Temperature - entropy diagram for vapor-compression refrigeration. [24] 

2.7.2 Ejector cooling systems (ECS) 

ECS eliminate the need for a compressor in the refrigeration part of the cycle. This is attractive 

for space applications as the ejector offers the advantage of having no moving parts. This 

improves long term reliability whilst decreasing weight and vibration levels [25]. An ECS is 

also attractive for terrestrial applications as it can be powered by low grade thermal energy from 

vehicle engines, industrial processes or solar thermal sources. The mechanically simple ejector 

utilizes a high pressure motive fluid to entrain and compress a lower pressure secondary fluid. 

This compression is required to raise the pressure of the secondary stream to that of the 

condenser. The primary disadvantage is that ejector based systems, whether driven by solar or 

waste heat, require the refrigerant to be circulated by an electric feedpump [22]. In comparison 
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to the conventional compressor-driven VCR cycle in Figure 2.12, ECS reduce power 

consumption but suffer from a reduced COP. The overall efficiency of a heat-driven ECS 

(COPo) is defined as the product of the heat engine efficiency (ηh) and the COP of the 

refrigerator, Equation 2.2. 

 

               (2.2) 

 

i) Operation of an ECS 

 

A simple ECS is given in Figure 2.14 where the cooling loop is comparable to the VCR cycle 

and follows the thermodynamic process shown in Figure 2.15. An ejector replaces the 

compressor in the VTL. The fluid flow is split in the LRL where a portion is expanded in the 

cooling loop (process 4-5) and evaporates to produce the cooling effect in process 5-1. The 

remaining portion of the fluid flow in the LRL is pumped to the waste heat recovery boiler in 

process 4-6. The boiler absorbs heat during process 6-7 superheating the fluid to produce the 

primary (motive) flow. The primary flow is then expanded through the ejector supersonic nozzle 

in process 7-e. The high velocity low pressure region in the ejector entrains the secondary fluid 

in process 1-s1, expanding the flow due to a reducing flow area. The two streams mix at point m 

and recompress to the condenser pressure at 2, due to a normal shock wave. 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

Figure 2.14 Schematic of an ejector cooling system (ECS). 
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Figure 2.15 Temperature - Entropy diagram for an ECS. 

ii) ECS in the literature 

 

Ejector cooling systems have largely been supplanted by electrically driven vapor-compression 

systems where a superior COP is achievable. Due to environmental considerations, researchers 

have mainly investigated steam-jet refrigerators, or ECS, as alternatives [22,26]. They make use 

of low grade solar thermal energy or waste heat to drive the boiler in the cycle. 

 

Although the ECS is promoted as a renewable system, it still requires an electric pump to 

circulate the working fluid. It has been argued that the ECS pump power required is negligible 

in comparison to the heat input at the boilers (typically less than 1% [27]) and is often neglected 

in the thermodynamic performance equations [28]. 

 

Eames et al. [28] provided a comprehensive literature review on ECS and selected water as the 

working fluid in their experimental study. Approximately 700 W cooling was achieved with the 

boiler operating at 120°C, the condenser at 28°C and the evaporator at 10°C. A COPo of 0.544 

was demonstrated. The ECS COPo is dependent on the boiler and evaporator temperatures and 

is independent of the condenser temperature up to some critical value. This critical condenser 

temperature results in a critical ejector pressure ratio (φ*), above which the ejector cannot 

function as the entrainment ratio (ω) and the COPo quickly reduce to zero. For low φ, the flow 

through the ejector primary nozzle becomes under-expanded and a free expansion wave in the 

mixing chamber limits secondary entrainment. An increased boiler temperature therefore 

requires an increased condenser critical temperature to maintain the critical driving pressure 

ratio (φ*) across the ejector. This is an attractive result for applications where the sink is 
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operated at an elevated temperature. If the geometry of the ejector were to be variable, it would 

enable variable critical operating points (φ*). 

 

Sun [29] analyzed the effect of variable ejector geometries on the performance of an ECS. The 

author also concluded that the geometry of the ejector should ideally be variable in order to 

provide constant cooling capacity at various boiler, evaporator and condenser operating 

temperatures. A decrease in boiler temperature or an increase in condenser temperature requires 

comparably larger ejector nozzle and diffuser geometries to maintain critical operation at φ*. 

 

Meyer et al. [27] demonstrated an open-loop steam-jet ECS. Various ejector nozzle diameters 

ranging from 1.5 mm to 3.5 mm were investigated with a fixed mixing section diameter of 

18 mm. The optimal primary nozzle exit position (NXP) was experimentally determined to be -

5 mm. A COPo of 0.253 was achieved using an ejector with a primary nozzle throat diameter of 

3.5 mm, a boiler temperature of 95°C, an evaporator temperature of 10°C and a water cooled 

condenser temperature of 22.6°C. It is evident that the ECS performance is largely dependent on 

the boiler and condenser operating temperatures, as well as the ejector geometry. 

 

Chunnanond et al. [30] experimentally investigated the pressure profile along the ejector axis. 

The results confirmed that a pressure ratio (φ) above some critical point (φ*) results in 

unchoked flow. Superheating the vapor at the primary inlet offers no performance advantage 

other than preventing the condensation of a wet fluid (see schematic in Figure A.5, Appendix 

A). Increasing the primary nozzle exit position (NXP) from the mixing chamber improves the 

entrainment ratio (ω) and the COPo. 

 

Using steam as the working fluid is environmentally friendly but does limit the evaporator 

operating temperature to above the freezing point of water. Cizungu et al. [31] investigated 

modern environmentally friendly refrigerants including R-123, R-134a, R-152a and R-717 for 

use in an ECS to provide sub-zero cooling. Khalil et al. [32] conducted a theoretical study on an 

ECS using R-134a as the working fluid. In order for the evaporator to operate at 10°C, the 

boilers were maintained between 64°C and 74°C with a condensing temperature of 35°C. This 

temperature range is appropriate for low-grade solar or waste heat sources. Increased boiler 

temperatures result in improved ejector performance. Huang et al. [33] investigated an ECS 

using R-141b that achieved a COPo of 0.5 with a generator temperature of 90°C, condenser 

temperature of 28°C and an evaporator temperature of 8°C. Using a solar thermal source of 

700 W/m
2
 the COPo was reduced to 0.22. Roman et al. [34] investigated an ECS employing a 

variety of two-phase working fluids. Performance improved with an increase in boiler 
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temperature and a decrease in condenser temperature. The ejector geometry is specifically 

designed for a given fluid and only one steady state critical operating point. Literature 

pertaining to the intricacies of ejector design is presented in section 6.1. 

 

iii) Novel ECS 

 

The circulation pump used in the conventional ECS renders it mechanically unreliable and 

expensive for application on spacecraft. The development of a pump-free ECS is an attractive 

concept that few researchers have investigated. 

 

Nguyen et al. [35] developed a pump-free gravity assisted ECS where the low pressure side 

(condenser) is elevated to 7 m. This provided the gravity head necessary to return the working 

fluid to the high pressure boiler. Such a system is unsuitable for micro-gravity applications. 

Huang et al. [36] and Wang et al. [37] investigated an ECS that is driven by a thermal pump 

with no circulation pump required in the loop (Figure 2.16). The thermal pump is conceptually 

similar to the PTL where two vapor generators, or boilers, are cyclically pulsed to drive the flow 

of refrigerant around the loop. This design has the same gravity dependant limitation as that 

Nguyen et al. [35]. The condenser is elevated to 1.8 m for the gravity head to assists with flow 

back to the generators. The lower liquid receiver tanks are intermittently cooled to depressurize 

the vapor generators in order to receive liquid from the condenser during the liquid intake phase. 

The cooling jackets are deactivated during the pressurizing and pulsing phases of the generators. 

This concept is more complex than the PRS, requires excess power consumption and cannot 

function in a gravity-free environment. 

 

The solar integrated thermal management and power (SITMAP) cycle was proposed by Nord et 

al.  [38] and further investigated by Kandil et al. [25] (Figure 2.17). It was developed for 

spacecraft applications and combines a thermal management and power producing system 

resulting in significant weight savings. Nitrogen gas is superheated by waste heat or solar 

thermal energy to drive a turbine, which produces electrical power to drive a pump or other 

electrical equipment. An ejector compresses the flow rather than a conventional compressor in 

the cooling part of the cycle. The SITMAP system was further investigated by Zheng and Weng 

[39] who simulated the cycle performance. An evaporating temperature of 280K is achievable 

with a 395K generating and 290K condensing temperature. 
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Figure 2.16 Thermally pumped ECS  investigated by Huang et al. [36]. The system relies on 

a 1.8 m gravity head and intermittent cooling of the generator tanks. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.17 Solar integrated thermal management and power (SITMAP) system [25]. 

2.7.3 PRS concept development 

The PRS proposed by Brooks et al. [5] is a two-phase, active cooling system which combines 

the technologies of the SITMAP ECS and the PTL. Replacing the SITMAP pump-turbine 

combination with a pair of PTL constant volume boilers results in a pump-free refrigeration 
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system that can be powered by solar or waste heat sources. Whereas earlier work conducted at 

UKZN focused solely on the design of a PTL [21,4], this research also aims to test the PRS 

concept. 

 

A schematic of the PRS is shown in Figure 2.18. The thermodynamic cycle is shown in the T-s 

diagram, in Figure 2.19. Refrigerant is pressurized in the isochoric process 4-6 (constant 

volume) in the isolated boiler. At ∆Pset the refrigerant is pulsed out of the boiler and directed 

through the ejector cooling loop. The low pressure flow through the ejector entrains refrigerant 

from the evaporator, and compresses it to the condenser pressure. Flow in the LRL is split such 

that a portion of it expands in the cooling loop to provide refrigeration, and a portion is injected 

into the alternate low pressure boiler.  

 

Brooks et al. [5] highlight the challenges regarding the design of the ejector with the aid of a 

computational analysis. Preliminary experimental work and CFD modeling indicated that 

entrainment is possible using an ejector driven by pulsatile flow [5]. The present effort therefore 

focuses on the design and optimization of an ejector to cope with transient flow. The design and 

analysis of an appropriate ejector for use in such a system is addressed. Following this, a full 

prototype of the ejector-based refrigeration system is constructed and tested. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.18 Schematic of PRS. Pulses from the PTL boilers are directed through the ejector 

cooling loop.  
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Figure 2.19 Temperature - Entropy diagram for the PRS.  

Eliminating the pump improves reliability and results in power and mass savings, which is 

attractive for spacecraft applications. In addition, the PRS would provide an energy-conscious 

alternative to terrestrial vapor-compression refrigeration. 

2.7.4 PRS for terrestrial applications 

The PRS does not require power intensive rotating equipment and can be powered by waste heat 

or solar thermal energy. It is therefore well-suited to rural areas without access to grid electricity 

and can offset power consumption in urban areas. An alternative technology that has found 

successful application terrestrially is the adsorption refrigerator. Although it is power-free and 

heat-driven, it suffers from a poor COPo in the range of 0.1 to 0.5 [40]. 

 

Sustainable technologies have become more prevalent as the world endeavors to rely less on 

fossil fuels and reduce carbon emissions. It is estimated that 15% of electricity consumption 

worldwide is used for refrigeration and air conditioning processes [22]. South Africa, the largest 

greenhouse gas producer in Africa, signed the Kyoto Protocol in 2002 [41], yet coal-fired power 

stations account for 95% of the country’s domestic power production [42]. Implementing 

sustainable energy systems is necessary to preserve resources and reduce harmful emissions. 

 

Cooling systems are most desirable in mid-latitude sunny regions where a plentiful supply of 

solar radiation can be exploited. The use of solar energy makes particular sense as it is the most 

abundant source of renewable energy available, at approximately 1.08 x 10
14

 kW worldwide 

[43]. As cooling demands increase with intensity of solar radiation, the excess heat may be 

exploited to power cooling systems. 
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In off-grid areas, a flat plate, evacuated tube or concentrating solar collector can be coupled to 

the PRS to provide a renewable heat source at high temperatures. Novel solar collectors such as 

the rear focusing ring array concentrator and fiber optic transmission system developed by 

Mouzouris et al. [44] can be used to channel heat to a point of application. Waste heat is a 

common by-product in industrial processes and can be recovered utilized to drive the PRS. 

Using waste heat or solar thermal energy to provide refrigeration would reduce power 

consumption, help conserve fossil fuel resources and improve living conditions for communities 

in remote, off-grid regions of the world, particularly in developing nations such as South Africa.
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3 PULSE THERMAL LOOP DESIGN  

This chapter details the design and selection of various components required for a PTL 

engineering prototype. The completed system is photographed in Figure 3.1. The physical and 

geometric properties of this PTL are compared with previous versions in Table A.2, Appendix 

A. The design considerations for the boilers and the condenser include the prospect of using 

them in the proposed PRS, as described in Chapter 6.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 The assembled PTL including thermally coupled boilers, a VTL, a condenser, 

and a LRL. Flow in an anti-clockwise direction is controlled through the use of check valves 

and a 3-way servo valve. Two VTL lengths were investigated. 

3.1 PTL design 

The PTL design requirements were obtained from the literature and evaluated using a modified 

version of the quality function development (QFD) technique, in Table A.3 and Table A.4, 

Appendix A.  

 

Important design requirements identified include ensuring a leak-free system that is fitted with 

sufficient instrumentation and provision of a custom software application to control the valves 

and log experimental data. Variable boiler heater power (Q) and ∆P control are ranked as the 
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most important requirements in the design of the PTL. These are the independent (controllable) 

variables. Testing Q and ∆Pset affects the dependant variables which include the pulse frequency 

(f) and the system temperatures. 

 

The main PTL design features are summarized as follows: 

 

i) Performance 

 

The boiler block is manufactured from aluminum 6082-T6 having a conductivity of 

180 W/m.K. The design includes two 500 W electrical heaters to simulate a waste heat source 

and instrumentation to enable performance evaluation and comparison with previous PTLs. 

Multiple valves control the flow of refrigerant around the loop. This includes a custom servo-

actuated 3-way ball valve. The PTL is designed to achieve a large driving pressure differential 

(∆P) which would benefit the operation of the PRS. A sight glass installed at each boiler 

chamber permits visualization of the injection, boiling and flow of refrigerant during testing. 

Custom control software was developed, which logs experimental data to a spreadsheet file. 

 

ii) Geometry and assembly 

 

The PTL is compact in design to minimize weight as this is an essential requirement for 

spacecraft components. This also reduces the thermal inertia, and hence the cool-off periods 

between experiments. The transfer lines are constructed of 1/4” stainless steel tubes to ensure 

compatibility with the available equipment. The PTL design makes use of modular components 

including quick connect fittings that enable system reconfiguration and testing of the PRS. The 

system is assembled in the horizontal plane to minimize gravitational effects. Volume ratios 

reported in the literature are used to ensure operational success and to enable direct comparison 

with earlier systems. 

 

iii) Safety 

 

The PTL operates at temperatures of up to 100°C and pressures of up to 25 bar. For this reason 

adequate design safety factors (SF) are applied and pressure relief valves and software fail-safes 

are considered. Leaks are avoided as exposure to the working fluid may have adverse effects on 

the operators. Tapered national pipe thread (NPT) and compression fittings are used throughout 

as they provide a pressure tight seal. A laminated glass pane shields the operators from the 

experiment. 
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3.2 Refrigerant selection 

There are four groups of refrigerants including chlorofluorocarbons (CFCs including R-12 and 

R-114), hydrochlorofluorocarbons (HCFCs including R-22, R-123 and R-142b), 

hydrofluorocarbons (HFCs including R-134a and R-152a) and additional refrigerants such as 

water (R-718b) and ammonia (R-717). CFCs and HCFCs are being phased out due to the 

Montreal Protocol. Various refrigerants and their properties are compared in Table A.5, 

Appendix A. 

 

The chosen refrigerant must be chemically stable, non-toxic, non-explosive, non-corrosive and 

environmentally friendly. Some refrigerants are now prohibited due to their ozone depleting 

potential (ODP) and global warming potential (GWP) [22]. This includes R-11, R-12, and R-

113. Refrigerant thermophysical properties include the boiling temperature at 1 bar, boiling 

pressure at 100°C, molecular mass and the latent heat of vaporization. The fluid pressure at the 

boiler temperature should not be too high in order to avoid heavy construction of the pressure 

vessel and instrumentation. Satoh et al. [45] showed that a larger molecular weight is beneficial 

in an ejector cycle as this can result in an increased entrainment ratio and compression ratio. A 

fluid with an increased latent heat of vaporization is able to provide greater heat transfer 

capability. Water is a possible working fluid, however, it reacts with 304 and 316 stainless steel 

in some aerospace applications [6], and is limited to applications above freezing point. 

Ammonia is an attractive refrigerant with a large latent heat of vaporization, but is highly toxic 

and corrosive [6]. Methanol works well with stainless steel but reacts with aluminum [6].  

 

Refrigerant R-134a was selected to enable the direct comparison of the results in this work with 

that of Weislogel and Bacich [16] and Brooks et al. [4]. It is well suited to the expected 

operating temperatures and pressures. It has a low boiling point of -26.1°C at standard pressure 

and an acceptable pressure of 39.72 bar at 100°C. It has a favorable latent heat of vaporization 

of 190.9 kJ/kg and molecular mass of 102.3 g/mol. The only disadvantage is that it is classified 

as a wet vapor refrigerant where its saturated vapor curve on the T-s diagram has a negative 

slope (Figure A.1, Appendix A). When the fluid undergoes expansion, as in the case of an 

ejector nozzle, it passes through the two-phase region and condensed droplets form in the vapor 

flow. The vapor may be superheated prior to expansion to avoid condensation [46]. 

3.3 Boiler design 

The complete PTL boiler assembly is shown in Figure 3.2. It incorporates cartridge heater 

elements, sight glass windows and threaded ports for pressure transducers, thermocouples and 
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refrigerant charging valves. The block was machined from a 215 mm x 100 mm x 75 mm billet 

of aluminum 6082-T6. The design drawings are provided in Figures C.3 and C.4, Appendix C. 

The boiler chambers each have a capacity of 81.2 cm
3
. Two 12 mm diameter through holes 

directly beneath the boiler chamber locate the 500 W electric cartridge heaters. Thermal inertia 

is minimized by removing unnecessary material. Leaks are minimized by using compatible sight 

glass gaskets (grafoil or non-asbestos) and ensuring that the cover plate bolts are tightened to 

the correct torque. Flow control valves are located at the boiler inlet and outlet ports. 

 

 

 

 

 

 

Figure 3.2 Complete PTL boiler section including valves and instrumentation. 

3.3.1 Boiler block material 

Four materials were considered for the manufacture of the boiler block, including 

aluminum 6082-T6, copper, brass and 316 stainless steel (Table A.6, Appendix A). Aluminum 

6082-T6 was selected for its superior thermal qualities and low cost. It has a density of 

2700 kg/m
3
, specific heat of 0.903 kJ/kg.K and a thermal conductivity of 180 W/m.K. These 

properties result in a light weight design with excellent heat transfer performance. 

 

The minimum wall thickness (t) of aluminum 6082-T6 for the boiler is calculated according to 

the requirements of a thin walled pressure vessel using the hoop stress method, Equation 3.1 
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[47] (Appendix B.1). For an internal radius (r) of 11 mm, a maximum pressure (P) of 25 bar and 

a yield stress (σy) of 250 MPa, a minimum wall thickness of 0.11 mm is calculated. The wall 

thickness safety factor (SF) of the boiler block design exceeds 10. 

 

     
     

        (3.1) 

3.3.2 Sight glass window 

Two sight glass window options were considered for incorporation into the boiler design 

(Figure 3.3). The threaded end cap incorporating a fused sight glass was used in a previous PTL 

[21]. It enabled visual confirmation of refrigerant injection but it was difficult to see boiling 

taking place. Large borosilicate gauge glass windows [48] were selected as they provide a 

clearer view of the injection, boiling and pulsing process. The glass was installed using a bolted 

cover plate and a gasket material. 

 

 

 

 

 

 

 

 

Figure 3.3 Sight glass windows (a) threaded end cap, and (b) flat gauge glass 

The gauge glass SF is calculated using Equation 3.2 [49], (Appendix B.1). For a modulus of 

rupture, M, (or MOR strength) of 16.55 MPa [50], an internal pressure (P) of 25 bar, a 

thickness (t) of 17 mm, and an unsupported area (A) of 2.5 in
2
, an SF of 3.9 is calculated. 

 

   
           

   
     (3.2) 

The boiler sight glass bolts were appropriately tightened to avoid leaks or tensile failure under 

loading. The applicable theory is detailed in Figure B.1, Appendix B.1. The tightening force 

(Fi), tightening torque (Ti) and SF of the sight glass bolts are calculated using Equations 3.3 to 

3.5 [51]. SAE Class 4.8 (M4) steel bolts were selected for the design, having a proof stress of 

310 MPa. Each bolt is tightened to the calculated torque of 2 N.m. A bolt SF of 5.14 is 

calculated. 

(a) (b) 
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                     (3.3) 

                     (3.4) 

   
  

             (3.5) 

3.3.3 Boiler stress computational analysis 

A simplified finite element analysis (FEA) was carried out on the boiler block in Autodesk 

Inventor. This investigated the maximum stress and deformation of the block under the 

maximum loading conditions. The mesh of the boilers is shown in Figure 3.4 containing 

164466 nodes with 105644 elements. An internal pressure of 25 bar is applied and the 

compressive bolt force from the 8 sight glass bolts is approximated as a uniform load of 9800 N 

on each side of each chamber (calculated in Appendix B.1). The analysis does not take into 

account the local stress points at the nut washer/boiler interface, or corners.  

 

Figure 3.5 shows the Von Mises Stress contours for the given loading conditions. The 

maximum stresses occur at the inner diameter of the boiler chambers and decrease with an 

increase in distance away from the pressurised chamber. A maximum stress (σmax) of 22.35 MPa 

occurs at the sight glass cavity minimum wall thickness, which is 2 mm. A cross-section 

drawing indicating the minimum wall thickness is shown in Figure C.2, Appendix C. The stress 

profile is compared with the ultimate tensile stress (UTS) of 290 MPa to give the SF contour 

plot in Figure 3.6. The minimum SF is 11.18. Figure 3.7 shows the exaggerated deformation of 

the boiler block due to the loading conditions. A maximum displacement of 0.0025 mm occurs 

at the maximum stress points. 

 

The results indicate a robust boiler design when considering the loading conditions, and the 

various SF including that of the material, the bolts and the sight glass. The design is limited to 

the SF of the sight glass itself, which is 3.9. 
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Figure 3.4 Mesh applied to boiler block before simulation. Arrows indicate the applied 

bolt forces and the internal pressures. 

 

 

 

 

 

 

 

 

 

Figure 3.5 Von Mises analysis of boiler block showing a maximum stress of 22.35 MPa, at 

the minimum cross-section. 

 

 

 

 

 

 

 

 

Figure 3.6 Safety Factor contour plot of the boiler block showing a minimum of 11.18. 
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Figure 3.7 Displacement analysis of the boiler block showing a maximum of 0.0025 mm 

3.3.4 Boiler valves and instrumentation 

The complete boiler design includes check valves at the inlets and flow control valves at the 

outlets to control the flow (pulses) of refrigerant around the loop. Refrigerant charge valves and 

instrumentation including pressure transducers and thermocouples are located at each boiler. 

 

i) Check valves at boiler inlets 

 

One-way check valves at the boiler inlets ensure flow in one direction and isolates the 

pressurizing boiler. Various valve types were considered including the spring loaded poppet 

check valve and the lift check valve (Figure 3.8). These open when the upstream pressure is 

greater than the downstream pressure by a set value. The set cracking pressure can be specified 

from 0.3 bar to 1.8 bar [52,53]. 

 

The poppet check valve operates with a spring operated poppet that seals against an O-ring 

when closed. Forward flow has a flow coefficient (Cv) of 0.47 [52]. The O-ring material can be 

specified as either Buna-N or FKM. These materials react with fluorocarbons such as R-134a, 

and swell over time, permitting leakages. The lift check valve, although gravity dependant since 

it has to be orientated vertically, operates with no springs or elastomers [53]. Forward flow lifts 

the weighted poppet opening the valve with a Cv of 0.3. Reverse flow seats the poppet against 

the orifice with a metal-to-metal seal. As gravity dependency is not of major concern during this 

prototype phase, such a valve was selected to enable robust experimentation and counter the 

leaks that were present in the previous setup [21]. 
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Figure 3.8 (a) Poppet check valve and, (b) lift check valve [52,53] 

ii) Outlet servo valve 

 

Active control of the fluid pulses using timed valves is necessary for operation of the PTL. A 

custom servo-controlled 3-way ball valve is implemented in the current control scheme rather 

than the solenoid valves that were used in the previous system [21]. This is to prevent the 

internal leaks that were reported. A 3-way valve and its function are shown in Figure 3.9. As an 

alternative, a commercial system could make use of a passive valve (for example a 3-way 

diaphragm-operated valve with hysteresis [16]) which is preset to a specific ∆Pset. 

 

 

 

 

 

 

 

 

Figure 3.9 3-Way valve operation [54] 

The valve selected for the PTL has 1/4” compression fittings at its inlets and makes use of an 

optional UHMPWE packing material with ethylene propylene O-rings [54]. The optional 

packing material results in a lower starting torque of 2.6 N.m compared to 3.7 N.m for the 

standard PTFE packing material [55]. This reduces the load on the servo that actuates it, 

resulting in a faster actuation speed. The valve has a Cv of 0.9. 
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A servo with the highest possible torque and speed rating was sourced, namely the Hitec HS-

7980 TH servo [56] (Table A.8, Appendix A). At 7.4 Volts it can actuate the output shaft up to a 

speed of 0.17 s/60° with a maximum stall torque of 4.31 N.m.  

 

The servo is attached to the 3-way valve using a bracket (Figure 3.10) that is manufactured from 

a stainless steel sheet, cut to the correct profile and bent into a U-shape. The servo is controlled 

using a LabVIEW application with pulse width modulation (PWM). 

 

 

 

 

 

 

 

 

 

 

Figure 3.10 3-Way servo valve assembly 

iii) Pressure relief valves 

 

Pressure relief valves are required on pressure vessels for safety purposes. They are principally 

similar to poppet check valves, in that they only allow flow in one direction when a set cracking 

pressure is reached. The cracking pressure is set by the spring tension of the valve to a desired 

safety limit. If the pressure inside the chamber exceeds this limit, the valve is operated. 

 

A previous PTL included these valves at the boiler chambers [21]. The valves were prone to 

premature failure and were not dependable. Such valves are not incorporated into the current 

design and a level of safety is designed into the custom software instead. When a set pressure or 

temperature limit is reached, the software cuts the power to the boiler heaters, reducing the 

pressure and temperature of the working fluid. 

 

iv) Charge port valves 

 

The charge ports located on each boiler chamber are used to fill the system with refrigerant. The 

charge port assembly includes a two-way ball valve and a Swagelok QC series quick connect 
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body (female) [57]. The QC body enables the connection to the charging cylinder which has a 

QC stem (male). Both the stem and the body include shut-off valves that are closed when 

decoupled. The ball valves on either side of the quick connects are required to control the flow 

of refrigerant when the quick connects are engaged. 

 

v) Instrumentation 

 

A pressure transducer and two thermocouples are installed at each boiler chamber for data 

acquisition. Two WIKA S-10 pressure transducers are utilized to provide absolute pressure 

readings from 0 bar to 25 bar. Four Type-K thermocouples provide temperature measurement of 

the boiler block material and the vapor inside the boiler chamber. The interface between the 

instrumentation and the LabVIEW control system is described in Chapter 4. 

3.4 Refrigerant charging cylinder 

A charging cylinder provides an easy, accurate and safe method filling the PTL or PRS with a 

set mass of refrigerant (Figure 3.11). It is comprised of off-the-shelf components including a 

75 cm
3
 cylinder, a pressure gauge, a Type-K thermocouple, a two-way ball valve, a quick 

connect (QC) stem for easy attachment to the PTL boilers, and a Schrader valve for connecting 

to the refrigerant supply cylinder. The design is easy to operate and enables accurate recording 

of the mass of refrigerant that enters the system. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.11 Refrigerant charging cylinder includes a pressure gauge and a thermocouple. It 

allows for accurate measurement of the mass of refrigerant with which the system is charged. 
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3.5 Condenser design 

During operation of the PTL a heat exchanger removes thermal energy from the working fluid 

that is pulsed through the lines, and represents the radiator on a spacecraft TMS. The heat 

exchanger maintains the ∆P between the boilers and the condenser. Variable condenser 

temperature control is therefore a functional requirement. Different types of heat exchangers can 

be employed including concentric tube, shell-and-tube (serpentine), and crossflow arrangements 

[6]. For the heat transfer rate required here (with a maximum of 1 kW) the concentric tube, or 

double pipe heat exchanger is adequate. A concentric tube heat exchanger was designed using a 

simplified analytical model and is constructed from stainless steel and extruded transparent 

acrylic tubes. 

3.5.1 Application of concentric tube heat exchanger theory 

A simple double pipe heat exchanger consists of two concentric pipes. One fluid flows through 

the inside of the smaller pipe while the other fluid flows in the annular region between the two 

pipes. The two fluids can either move in the same direction (parallel) or in opposite directions 

(counter flow) as shown in Figure 3.12. Both flow arrangements can be achieved using the same 

apparatus. The parallel flow arrangement in Figure 3.12 (a) is characterized by an initially large 

temperature difference between the two fluids, which approaches zero with an increase in length 

along the condenser axis. The outlet temperature of the cold fluid, Tc,o, cannot exceed the outlet 

temperature of the hot fluid, Th,o. For the counter flow arrangement in Figure 3.12 (b), the fluids 

enter at opposite ends, flow in opposite directions and exit at opposite ends. The temperature of 

the cold fluid at the outlet, Tc,o, can exceed the temperature of the hot fluid at the outlet, Th,o.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.12 A double pipe heat exchanger setup in (a) parallel flow and (b) counter flow 

arrangement with the corresponding temperature profile plots [47,58] 
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An in-depth two-phase condensation model was beyond the scope of this work and the focus 

here was to develop an approximate design, based on the overall heat transfer required of the 

heat exchanger. The heat transfer (q) in a concentric tube annulus (Figure 3.13) is governed by 

Newton’s law of cooling, Equation 3.6. This is manipulated to give the length (L) of the 

condenser in Equation 3.7. The overall heat-transfer coefficient (U) is the thermal resistance to 

heat transfer between two fluids, separated by a solid wall, through convection and conduction. 

It can be calculated using Equation 3.8. The convection terms (hh and hc) apply to the inner and 

outer surfaces of the inner tube. The conduction term is for a plain cylindrical wall and cannot 

be neglected in this analysis due to the significant relative wall thickness of the 1/4” tubes 

(0.9 mm). By convention, the working fluid is routed through the inner tube if it has a lesser 

mass flow rate than the cooling fluid [47]. The overall heat transfer is usually governed by the 

outer surface area of the inner tube [58]. By substituting the surface areas and cancelling terms, 

the overall heat transfer coefficient can be found explicitly using Equation 3.9. The logarithmic 

mean temperature difference (∆Tlm) for counter-flow and parallel-flow arrangements is given by 

Equation 3.10. For the same set of inlet and outlet temperatures, ∆Tlm for counter-flow exceeds 

that of the parallel-flow arrangement. The counter flow arrangement was selected as it results in 

a more compact heat exchanger [47,58]. 

 

 

 

 

 

 

Figure 3.13 Concentric tube annulus showing inner and outer tube diameters 
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The fluid properties in Equations 3.11 to 3.17 are evaluated at the mean temperature for the cold 

and hot fluids, where Tm=0.5*(Tin+Tout). The energy balance for the concentric tube is based on 

a constant surface temperature on the tube side, determined by the cooling fluid, with an 

insulated (adiabatic) shell [58]. The hot fluid in the tube is therefore cooled to the temperature 

of the cold fluid with a heat capacity rate, Cmin, defined in Equation 3.12. The maximum heat 

transfer calculated in Equation 3.12 is derived from the steady flow energy equation. The 

convection coefficients (hh and hc) in Equation 3.9 are calculated using Equation 3.13. The 

anticipated lower convection coefficient of the hot fluid controls the rate of heat transfer 

between the two fluids. A low flow velocity results in a longer condenser length requirement. 

Also, because the convection coefficient of the cold fluid is much larger than that of the hot 

fluid, the temperature of the tube wall will follow closely that of the cold fluid [47]. For the 

flow inside the tube, the inner diameter, IDt, is used. The hydraulic diameter (Dh) for annulus 

flow is calculated using Equation 3.14, where Ac and Pw are the flow cross-section area and the 

wetted perimeter, respectively. 

 

                  (3.11) 

                        (3.12) 

            (3.13) 

   
                                                                    

   
   

  
                          

    (3.14) 

 

The convection coefficient in Equation 3.13 requires the calculation of both the Reynolds 

numbers (Re) and Nusselt numbers (Nu) for tube and annulus flow, using Equations 3.15 and 

3.16 respectively [47]. Nu is constant for laminar flow in a pipe (Re < 2300) but varies for 

laminar flow in an annulus. The power equation for laminar annulus flow is a curve fit 

approximation of tabulated values for flow in a circular tube annulus, with one surface at 

constant temperature and the other insulated (Figure A.2, Appendix A). For transitional and 

turbulent flow (Re > 2300) the Gnielinski correlation gives less than 10% error when compared 

to the simpler Dittus-Boelter equation, which can give as much as 25% error [47]. To make use 
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of the Gnielinski correlation, the friction factor is first computed either through the Moody 

diagram or using the correlation developed by Petukhov, Equation 3.17 [47]. The velocity of 

flow in the annulus is calculated from continuity, in Equation 3.18. The economic velocity of 

water is in the range of 1.4 m/s to 2.8 m/s [58]. 
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3.5.2 Condenser analytical model 

Equations 3.6 to 3.18 are coded in MATLAB to investigate the size of the condenser required. 

The script file is supplied in Appendix F.1. The pseudo-code flow chart in Figure 3.14 describes 

the analytical procedure. The model investigates a range of annulus diameters resulting in 

different annulus flow velocities and lengths required to meet a set of operating conditions. 

 

The following assumptions are made to simplify the model: 

1) The overall heat transfer coefficient is constant over the length of the heat exchanger 

2) Fluid properties in Equations 3.11 to 3.17 are evaluated at the average saturation 

temperature. 

3) The fluid properties are constant steady state 

4) Phase change is not considered 

5) Potential energy affects are negligible 

6) No heat loss to the surroundings  
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Figure 3.14 Pseudo-code flow chart for the analytical model of the PTL condenser. 

3.5.3 Condenser model results 

Three coolants were considered for the condenser, including water, a glycol-water mixture of 

50:50 and a glycol-water mixture of 30:70. The inputs to the model anticipate the nominal 

operating temperatures and flow rates of the PTL, as given in Table 3.1. The mass flow rate and 

operating temperatures of the refrigerant (hot side) are known from previous PTL experiments 

[59]. Refrigerant flows through the condenser tube (which is a 1/4” tube with 4.55 mm ID) at 

5 g/s, entering it at 60°C and condensing to 20°C. The temperature of the condenser coolant is 

set at 15°C [2]. A range of annulus diameters (larger than the tube diameter) is also specified. 

For the experimental prototype, a chiller is used with a centrifugal pump providing an 

approximately steady flow rate of 110 g/s.  
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Table 3.1 User defined parameters for the condenser design and selected results. [59] 

D
es

ig
n

 i
n

p
u

ts
 

Refrigerant (hot side) R-134a 

Refrigerant inlet temperature 60.0°C 

Refrigerant inlet quality 1.00 

Refrigerant outlet temperature 20.0°C 

Refrigerant mass flow rate 5 g/s 

Coolant (cold side) Water or ethylene glycol-water mixture 

Coolant inlet temperature 15.0°C 

Coolant inlet quality 0 

Coolant mass flow rate 110 g/s 

Tube material conductivity 316 stainless steel, kss = 16.30 W/m.K 

Tube outer diameter, ODt 1/4”   6.35 mm 

Tube inner diameter, IDt 4.55 mm 

Annulus diameter range, IDa 6.5 mm < IDa < 80 mm 

R
es

u
lt

s 

Maximum heat transfer 257.47 W 

Annulus fluid outlet temperature 15.63°C 

Tube fluid Reynolds number 113091.20 

 

The results are presented in Figures 3.15 to 3.17. Similar design graphs can be generated for 

different steady flow rates, operating temperatures and tube materials. For this case, a total heat 

transfer of 257.5 W is calculated. Referring to Figure 3.15, water has a lower viscosity than the 

glycol-water mixtures which results in a larger Reynolds number, larger Nusselt number and an 

improved heat transfer coefficient. Figure 3.16 shows that this results in a smaller condenser 

length requirement for a given annulus diameter. An increased glycol percentage in the glycol-

water solution increases the viscosity resulting in a reduced Reynolds number, smaller Nusselt 

number, poorer heat transfer coefficient and an increased condenser length requirement for a 

given annulus diameter. 

 

The 30% glycol-water offers an acceptable condenser size whilst enabling operation at below 

freezing temperatures. Figure 3.17 shows the relationship between the coolant flow velocity and 

the annulus diameter. Continuity requires a reduced flow velocity for increased annulus 

diameters. The three profiles are similar due to the three fluids having similar saturated liquid 

densities.  

 

A 14 mm ID annulus diameter was selected for the design, giving a flow velocity of 0.9 m/s 

(Figure 3.17). From Figure 3.16 the condenser length is 2.35 m. The use of copper tubing was 
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also investigated as copper is 25 times more conductive than stainless steel. It was found that 

this would only result in a 51 mm (or 2.2%) reduction in the condenser length for the selected 

fluid and annulus diameter. This is due to the conduction term of Equation 3.9 having a 

relatively small impact on the overall heat transfer coefficient in comparison to the convection 

terms. 

 

This condenser may be used for other fluids including water and glycol-water of 0% to 30% 

glycol concentration. The lower viscosity of these fluids will result in the condenser being over-

designed and will enable subcooling. Conversely, a slight increase in the condenser length will 

enable subcooling of the 30:70 glycol-water.  

 

 

 

 

 

 

 

 

 

Figure 3.15 Condenser annulus diameter vs. Reynolds number. Increased fluid viscosity 

results in a lower Reynolds number. 

 

 

 

 

 

 

 

 

Figure 3.16 Condenser annulus diameter vs. condenser length. Increased fluid viscosity 

results in a longer condenser length requirement. 
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Figure 3.17 Condenser annulus diameter vs. annulus flow velocity. The velocity profiles are 

similar due to the different fluids having similar saturated liquid densities. 

3.5.4 Final condenser design 

The design is presented in Figure 3.18. The concentric tubes consist of 1/4” stainless steel inner 

tubes and 14 mm ID extruded acrylic outer tubes. The 30:70 glycol-water coolant enters and 

exits the annulus via the inlet manifold.  Refrigerant vapor is supplied to the inner tube and exits 

as subcooled liquid. Thermocouples measure the temperature of both fluids at the inlets and 

outlets. The manifolds are connected using two 14 mm ID (by 16 mm OD) tubes with a total 

length of 2354 mm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.18 Concentric tube counter-flow condenser design. 
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3.5.5 Condenser assembly 

The manufactured condenser is shown in Figure 3.19. The annulus tubes and the manifolds are 

made from acrylic. The required holes are drilled into the manifolds and the ports tapped with 

1/8”, 1/4” and 1/2” NPT threads. Two 16 mm holes on each manifold locate the annulus tubes. 

The tubes are glued into place using chloroform. Four Type-K thermocouples are installed at the 

fluid inlets and outlets. The fittings are assembled with silicon to eliminate potential leaks. The 

alternate condenser temperature symbols used in the control software are shown in the figure. 

 

The manufactured condenser length of 2632 mm is 25% longer than the calculated design 

length. This provides a margin of safety which enables the condenser to perform under varied 

operating conditions. The condenser tube volume is 42.82 cm
3
. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.19 Concentric tube condenser inlet manifold with the hot and cold fluid inlet and 

exit thermocouples and the VTL check valve. 
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The coolant is supplied using a LAUDA chiller unit with variable temperature control. The 

temperature can be adjusted from -30°C to +90°C when using a 30% glycol-water mixture. 

3.6 Adiabatic transfer lines (VTL and LRL) 

The volumes of the remaining system components depend on the boiler volume, and the 

refrigerant charge mass. A correctly sized VTL, condenser and LRL ensures that there is enough 

system volume for the boiler pulses to expand and condense into. The guideline volumes of 

these components are calculated in Table 3.2, using the volume ratios reported by Weislogel and 

Bacich [16]. This assumes that the system is initially charged with a vapor fraction of 60% to 

80% at 6 bar and 20°C. The volume of the condenser in Figure 3.19 is 42.83 cm
3
 which is 

14.9% smaller than the recommended volume of 50.3 cm
3
. The adiabatic VTL and LRL 

volumes can be adjusted to achieve the desired overall volume ratio of 1.4. 

Table 3.2 System component guideline volumes based on reported ratios. 

 
Volume [16],    

cm
3
 

Volume ratio, 

(Component volume/boiler 

volume) 

PTL and PRS 

recommended 

volume, cm
3
 

Boiler 44.8 1.00 81.2 

VTL 19.7 0.4 35.7 

Condenser 27.8 0.6 50.3 

LRL 14.9 0.3 26.8 

VTL + condenser + LRL 62.4 1.4 113.1 

 

The VTL and LRL plumbing consists of 1/4” transport tubes, valves and fittings. Stainless steel 

is selected for its compatibility with the instrumentation and fittings. The recommended 

volumes of the VTL and LRL are 35.7 cm
3
 and 26.8 cm

3
 respectively. The thermodynamic 

process should ideally be adiabatic if the VTL and LRL are well insulated, as shown in 

Figure 3.1. 

 

The VTL consists of simple 90° tube bends. Flow constrictions are minimized to reduce the 

head losses associated with the high flow velocity. A poppet check valve with a cracking 

pressure of 0.023 bar (1/3 psi) is installed in the VTL just before the condenser, as shown in 

Figure 3.19. This ensures that the VTL does not receive backflow of liquid refrigerant from the 

condenser during low pulse frequency operation. Two VTL lengths are investigated having 

volumes of 31 cm
3
 and 52.5 cm

3
. 

 

The LRL consists of tube bends, a cross fitting with instrumentation, a ball valve, a vent port, 

and a flow splitting manifold, shown in Figure 3.20. The LRL can be outfitted with more 
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components as the low flow velocity will result in a relatively small head loss. The stainless 

steel cross fitting is fitted with a WIKA A-10 pressure transducer and a Type-K thermocouple. 

This is included in the LRL to aid in determining system leaks. The ball valve is used to isolate 

the boilers from the loop during leak tests. The vent port enables the connection of a vacuum 

pump to the loop. This is necessary to evacuate non-condensable gases before charging with 

refrigerant. The vent port is also used to discharge refrigerant from the system. The flow split 

manifold simply splits the liquid flow going to the two check valves at the boiler inlets. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.20 LRL components including necessary valves and instrumentation. 

3.7 System head losses 

The flow of refrigerant through the system’s tubing passes through a variety of bends, valves 

and fittings, or is subjected to abrupt changes in the flow area, which results in flow separation 

and losses. The system head loss is calculated to work out the minimum pumping pressure 

required for PTL operation. 

 

The losses include both minor and major losses. Major losses are due to fluid friction with the 

tube walls and the minor losses are due to flow constrictions. Minor losses arise from flow 

separation around the corners and swirling secondary flows (caused by centripetal 

acceleration) [6]. 

 

The head loss calculations are included in Appendix B.2 and assume incompressible steady 

flow. It is assumed that the system is charged such that the VTL and the first half of the 

condenser contain saturated vapor, and the latter half of the condenser and the LRL contain 

saturated liquid. The solution is therefore split into two parts; i) the pressure losses in the vapor 

section, and ii) the pressure losses in the liquid section. 
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The velocity is calculated from the assumed flow rate of 5 g/s, for the vapor and the liquid 

portions, using Equation 3.19. The Reynolds number (Re) can then be calculated from 

Equation 3.20. The friction factor (f) is found using the Moody Diagram [58] with the Reynolds 

number and the relative roughness (Є/D) of the tube. The total head loss is given by 

Equation 3.21. The major head loss (hf) due to static head and fluid friction in the transport 

tubing is calculated using Equation 3.22 where L and D are the length and diameter of the pipe, 

respectively. The PTL is constructed in the horizontal plane therefore has zero static head. The 

minor head losses are calculated using Equation 3.23, where K is the sum of the loss 

coefficients. The head losses can be converted to absolute pressure values using Equation 3.24. 

 

    
         (3.19) 

   
   

        (3.20) 

               (3.21) 

      
 

         (3.22) 

       
        (3.23) 

           (3.24) 

 

The total head loss amounts to 46.6 m (R-134a) for the vapor section and 0.71 m (R-134a) for 

the liquid section. The largest contributing loss is the minor losses in the VTL, which amounts 

to 36 m, or 0.29 bar. The head losses result in a total pressure loss of 0.45 bar. This result does 

not take into account the losses caused by the multiple changes in flow area due to the fittings 

used. The significance of this result is that the driving ∆Pset must be greater than 0.5 bar in order 

for the PTL to pump refrigerant around the loop.  

3.8 Final assembly 

The final assembly is shown in Figure 3.1. The boiler sub-assembly is connected to the 

condenser sub-assembly using transport tubing and the various fittings and valves. A second 

variant of the PTL was also investigated which has a longer VTL. To minimize gravity effects 

the system is assembled in the horizontal plane. It is thermally isolated from the aluminum table 

by elevating it at various points using EPDM (ethylene propylene diene monomer) sponge. The 

adiabatic transport tubes (VTL and LRL) are covered with multilayer insulation. Without such 

insulation, the VTL and LRL are prone to heat exchange with the ambient air which could affect 

steady state results, especially at low pulse frequencies.  
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3.9 Instrumentation uncertainty 

The system includes 9 type-K thermocouples which have an uncertainty of ±0.2°C. This is less 

than 1% for temperatures above 20°C. Two Wika S-10 pressure transducers are installed at the 

boilers having a maximum uncertainty of ±0.5% with a response time of 1 ms [60]. One Wika 

A-10 pressure transducer is installed in the LRL having a maximum uncertainty of ±1% and a 

response time of 4 ms [61]. A water pump is used for the glycol-water coolant. The mass flow 

rate is estimated at 0.1 kg/s. 
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4 CONTROL SYSTEM 

The PTL and the PRS are controlled using National Instruments (NI) hardware and a custom-

written NI LabVIEW application. This is implemented in a single package to enable efficient 

use of time and resources available as the hardware is common to both systems. The setup 

shown in Figure 4.1 includes a computer with NI LabVIEW (Laboratory virtual instrumentation 

engineering workbench) software, power supplies, instrumentation and NI hardware. The 

software monitors pressures and temperatures at key locations around the loop. Driving pressure 

differential, or ∆P, control logic is implemented. One or both 3-way servo valves are actuated, 

depending on the flow configuration. The valve at the outlet of the boilers actuates when a set 

pressure differential, ∆Pset, is reached to pulse refrigerant around the loop. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 Control hardware for PRS experimental prototype. 
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by Brooks et al. [4] and Weislogel et al. [2]. In this scheme, the boiler pressures (P1 and P2) are 

measured once per loop iteration and the absolute difference, |∆P|, is calculated and compared 

with a set value, ∆Pset. One pressure transducer measures the building pressure of the isolated 

boiler whist the other measures the pressure of the pulsed boiler, which is in communication 

with the condenser and depressurizing. The software actuates the servo valves when |∆P| > 

∆Pset. 

 

NI LabVIEW is a graphical programming language used for data acquisition and automated 

control. The feed-back data flow environment enables a loop-based control scheme. A custom 

virtual instrument (VI) is developed with a simple graphical user interface (GUI). The GUI is 

shown in Figure D.1, Appendix D, and displays the real-time system pressures and 

temperatures. It enables system parameters such as ∆Pset, Q and valve position to be changed on 

demand during manual as well as automated operation. The experimental data are recorded to a 

spreadsheet file for data analysis.  

 

A fast sampling rate of 10 Hz captures finite changes in pressure and temperature. This enables 

investigation of the transient conditions at the ejector, in the PRS. Fail-safes are incorporated 

into the VI logic by limiting the maximum temperature and absolute pressure to 100°C and 

25 bar, respectively.  

4.2 ∆P control logic 

The various instruments used in the PTL and the PRS are shown in Figure 4.2. The instruments’ 

specifications are detailed in Table A.11 Appendix A. The basic ∆P control logic used for 

actuating the servos is described with the aid of Figure 4.3. Three operating modes are 

selectable on the GUI with tabbed-control. A limited description of the VI components is 

provided in Appendix D. 

 

The operating modes include: 

 

A. Manual operation 

 Valves can be actuated on demand for charging and pre-conditioning the system. 

 

B. PTL operation 

 This enables the autonomous operation of the PTL. 

i) Valve 1 remains at -90° throughout test 

ii) Monitor pressures and check for |∆P| > ∆Pset 
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iii) Valve 1 moves from ±90° to ±90°, sending a pulse of refrigerant through the 

VTL 

iv) Wait for |∆P| > ∆Pset, and repeat from step ii. 

 

C. PRS operation – Variant I 

 This enables autonomous operation of the PRS using a second valve. 

i) Monitors pressures and checks for |∆P| > ∆Pset 

ii) Valve 2 moves to +90° 

iii) Valve 1 moves from ±90° to ±90°, sending a portion or all of the pulse of 

refrigerant to the cooling loop 

iv) Wait ∆tejector after valve 1 has moved. This depends on the portion of the pulse 

required to drive the ejector 

v) Valve 2 moves to -90° (if required), sending the remainder of the pulse of 

refrigerant around the PTL bypass in an effort to minimize non-isentropic 

losses at the ejector 

vi) Wait for |∆P| > ∆Pset, and repeat from step ii. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 Instrument locations for the PTL and PRS. Other variants were investigated 

incorporating the same instruments. 
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Figure 4.3 Schematic of ∆P control logic for manual, PTL and PRS operation. 

4.3 Servo control with PWM 

The servos and the heaters are controlled with pulse width modulation (PWM). The average 

power of a signal is controlled by altering the duty cycle of a fixed frequency pulse train, shown 

in Figure 4.4. The duty cycle is the ratio of the time for which the signal is high to the pulse 

period. For a pulse frequency of 100 Hz, the period (1/f) is 10 ms. A standard servo’s neutral 

position occurs when the signal is high for 1.5 ms. This translates to a 15% duty cycle for the 

given frequency. If the frequency is doubled, the duty cycle doubles to 30%. The increased ‘on’ 

time relative to the pulse period, improves the power output. The servos are duty cycled at 

200 Hz in the application. 

 

 

 

 

 

 

 

 

 

 

Figure 4.4 PWM signals with different duty cycles. 
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The NI 9474 digital output module includes two digital counters. These are used to generate the 

PWM signals for the two servos. A pull down resister (of 10 kΩ) is required to ground the 

floating signal (when the signal is in the ‘off’ state). 

4.4 Heater power control with PWM 

Due to the hardware limitation of only having two counters available (which are used for the 

servos), the heaters’ PWM is generated in software with a loop controlled Boolean signal 

generator. The Boolean signal consists of a string of 1s and 0s representing the duty cycle. The 

signal is sent to the transformer box, which powers the two 500 W heaters when the signal is 

high (1s). A 10% duty cycle results in 100 W heat input at the boilers.  

4.5 Hardware 

The hardware includes an NI cDAQ chassis, five modules, two power supplies, a transformer 

box, and the instrumentation. 

4.5.1 Power supply 

Two separate power supplies are required in the current configuration. One power supply 

powers the pressure transducers whilst the other powers the servos. The servo power supply has 

a current limiting feature which is set to 7 Amps to prevent overloading them. A transformer 

provides the heaters with 230 V AC when it receives a positive signal from heater the output 

module. The power supplies are connected to a common ground.  

4.5.2 DAQ chassis and modules 

A compact cDAQ 9172 chassis is used to interface the input/output modules with the computer 

via USB 2.0 interface. The chassis has 8 slots available of which 5 are utilized in the current 

application. The modules include: 

 

1) NI 9211  

 4 cannel thermocouple input module 

 24 bit resolution 

 ±80 mV inputs 

2) NI 9203 

 8 channel analog input module (for the pressure transducers) 

 16 bit resolution 

 ±20 mA 
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3) NI 9474 

 8 channel digital output (for heater and servo control) 

 5 V to 30 V signal generation 

 2 counters 

4.5.3 Instrumentation 

Twelve Type-K thermocouples and six pressure transducers are installed in the system. The 

transducers are Wika S-10 and Wika A-10 units, each of which converts the pressure converts 

the pressure into a 4 mA to 20 mA electrical signal. The signal is then converted back into a 

pressure reading using Equations 4.1 and 4.2, where I is the current in Amps. The Wika S-10 

and A-10 models measure absolute pressure in the range of 1 bar to 25 bar and 0 bar to 24 bar, 

respectively. 

 

                 …Wika S-10   (4.1) 

                 …Wika A-10   (4.2) 

4.6 Summary 

A LabVIEW application enables efficient control over both the PTL and the PRS variants. The 

VI (described in D.3) includes tabbed control for selecting manual, PTL auto or PRS auto 

control. The application monitors the temperatures and pressures, and actuates the valves when 

∆Pset is reached. The data are logged to a spreadsheet file for post processing the results. Fail-

safes are integrated into the logic to ensure safety of the equipment and the operators. 
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5 PULSE THERMAL LOOP PERFORMANCE 

This phase of the research involved validating the PTL concept experimentally for a range of 

operating conditions. This includes investigating the system performance for a range of driving 

pressure differentials (∆Pset) and power inputs (Q). The experimental data are analyzed 

presenting nominal and off-nominal operation. 

5.1 Experimental procedure 

The experimental procedures include evacuating the system, charging it with refrigerant, pre-

start up, starting, steady state and shut down. 

5.1.1 Evacuating procedure 

A vacuum pump is connected to the vent port in the LRL to put the loop under a vacuum and 

remove non-condensable gases. The pressure is lowered to approximately 0.05 bar and the 

system is monitored for leaks. 

5.1.2 Charging procedure 

Before charging the system with refrigerant, an acceptable charge mass is calculated to achieve 

the desired mass distribution around the loop during operation. Figure 5.1 is adapted from 

Weislogel and Bacich [16] and illustrates the mass distribution of the vapor and liquid in the 

loop, just prior to a pulse occurring. Under normal operating conditions it is assumed that the 

open (depressurized) boiler, the VTL and half the condenser contains slightly superheated vapor 

at 8 bar just prior to a pulse. The second half of the condenser and the LRL contain saturated 

liquid at 8 bar. Lastly, the sealed boiler contains 20% saturated liquid and 80% saturated vapor 

at 14 bar. A charge mass of 80.9 g is calculated for these conditions in Appendix B.3. 

 

The calculated charge mass of 80.9 g gives a system vapor fraction (x) of 76% at 20°C, in 

Equation 5.1. This falls within the recommended range of 60% to 80%. The PTL is able to 

operate with an increased charge mass (i.e. a lower vapor fraction), however, an increase in 

refrigerant mass results in increased system pressures for a given heat input and condenser 

temperature. 

 

        
  

                (5.1) 
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Figure 5.1 Schematic of refrigerant mass distribution before a 16 bar pulse with a ∆Pset of 

8 bar. [16] 

After leak testing, both the loop and the charging cylinder are evacuated. The empty mass of the 

charging cylinder is recorded using a digital scale accurate to 0.1 g. The charging cylinder is 

cooled using ice to lower the pressure in the vessel. It is then connected to an R-134a supply 

line via the Schrader valve and filled with liquid refrigerant. The cylinder is warmed up to 

ambient conditions, whilst the boiler block is cooled using ice packs. The total mass of the full 

charging cylinder is recorded to note the amount of refrigerant it contains. The cylinder 

connects to the boiler block using quick connects, as shown in Figure 5.2. The two-way valve 

on either side of the quick connects controls the flow of refrigerant into the boiler chamber 

(Figure 5.3). One boiler chamber filled with saturated liquid at 20°C contains an approximate 

mass of 102 g. After discharge, the empty cylinder mass is recorded to note the mass of 

refrigerant transferred to the system. This process is repeated until the system is adequately 

charged. 
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Figure 5.2 Charging cylinder connected to the boiler using quick connects. The ball valves 

are opened to fill the boilers with refrigerant. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3 Boiler liquid level viewed through the sight glass. 
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5.1.3 Start-up procedure 

Once the system is charged with an adequate mass of refrigerant (0.6 < x < 0.8), certain pre-

conditioning steps are followed to ensure an appropriate refrigerant mass distribution in the loop 

before start-up: 

 

1. The loop is pre-conditioned such that at least one boiler contains the required refrigerant 

level (approximately 20% full). 

 

2. If a boiler contains more than 20% liquid refrigerant, heat is applied and some of the 

mass is directed into the loop. This ensures that there is enough condensed fluid in the 

LRL to be injected into the lower pressure boiler after the first pulse. The loop is pre-

conditioned through controlling the evaporator and condenser temperatures. 

 

3. The condenser coolant temperature (TW1) is set, along with the power input (Q), and 

∆Pset. 

 

4. If both boilers contain an adequate amount of refrigerant, the operator has two options 

to achieve the required ∆Pset: 

a. Allow one boiler to communicate with the condenser during start-up allowing 

the mass of refrigerant to evaporate, migrate to, and condense in the condenser. 

This will ensure that there is liquid present in the LRL before the first pulse 

occurs. The alternate boiler is isolated and increasing in pressure until ∆Pset is 

reached to initiate valve toggling. 

b. Allow both boilers to be isolated from the condenser and increasing in pressure 

during start-up. This gives the operator redundancy in case one of the boilers’ 

valves leak during start-up. If no internal leakage occurs, the first of the two 

pulses can take place at some intermediate pressure value. The alternate boiler 

continues to increase in pressure until ∆Pset is reached to initiate valve toggling. 

 

5. Prior to the first pulse, the VTL is externally heated. This minimizes premature 

condensation during the first few pulses. The system can be started without this pre-

conditioning step. 

 

6. Ice is placed at the boiler inlet check valves during start-up to prevent heat creep and 

ensure that liquid (not vapor) refrigerant is available for injection. The system can be 

started without this pre-conditioning step. 
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5.1.4 Steady-state operation 

A settling time of up to 10 min is allowed after a system variable is changed. This ensures that 

steady state is reached and provides the necessary data to enable higher level analysis of the 

results. 

5.1.5 Shut-down procedure 

The use of a routine shut-down procedure prevents damage to equipment and facilitates the 

subsequent start-up. This includes: 

1. Switching to manual control 

2. Turning off the heater power whilst monitoring the temperature and pressure 

3. Turning off the coolant fluid flowing through the condenser 

5.2 Experimental results 

The PTL was successfully demonstrated 22 times during this phase of the research. The longest 

unbroken run lasted a total of 7 hours and 19 minutes. These results support the notion that the 

PTL has good potential for deployment as a thermal management system in the power range 

from 200 W to 800 W.  

 

The response of the system to changes in four variables, namely, ∆Pset, heater power (Q), 

condenser temperature (TW1), and refrigerant charge vapor fraction (x), was investigated. The 

primary independent variables included ∆Pset and Q. During operation, one variable was 

changed systematically whilst the others were kept constant. Refrigerant charge mass and 

condenser temperature were kept constant.  

5.2.1 PTL - ideal start-up 

For a PTL that has been previously charged, operated, and shut down under normal conditions, 

no pre-conditioning of the loop is required. The loop starts by simply turning on the heater 

power if at least one of the boilers contains an appropriate mass of refrigerant. 

 

Figure 5.4 illustrates that start-up is often characterized by an initial temperature overshoot, 

especially for starting at increased ∆Pset. P1 and P2 represent the absolute pressure inside the 

two boiler chambers whilst TB1 and TB2 represent the boiler block temperatures. In this test, the 

system was charged with 115 g of R-134a (65% vapor at 20°C). Power was supplied to the 

boilers at 800 W simulating a waste heat load, and the condenser was set to 20°C. PTL 

operation was initiated at 320 s reducing the boiler temperature from 80°C to a steady 53°C 
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within 200 s. The average pressure in the boilers reduced from 17 bar to 12.5 bar. The graph 

illustrates the importance of having a TMS for controlling the temperature of sensitive 

electronics. If there was no TMS in place, the block temperature would rapidly have reached 

100°C. 

Figure 5.4 Ideal PTL start-up pressure and temperature response. Short VTL with x = 0.65, 

Q = 500 W and TW1 = 20°C. After initiating pulses with a ∆Pset of 4 bar, the average boiler 

pressure reduced from 24 bar to 12.5 bar, and temperature reduced from 80°C to 54°C. 

5.2.2 PTL - non-ideal start-up 

Off-nominal start-up or even failure of the loop occurs if the refrigerant mass and distribution is 

not ideal. In this way the PTL is similar to a CPL or LHP, which are sensitive to wick liquid 

levels at start-up. 

 

A low refrigerant mass in the boilers at start-up can result from improper shut-down or internal 

valve leaks. The loop can however be started by forcing the pulses at low to progressively larger 

∆Pset (from as low as 1 bar). This can be seen in Figure 5.5 where the boilers initially contained 

very little mass and could not pressurize. The ∆Pset was incrementally increased from 1 bar to 

3 bar and slowly more mass was circulated which allowed for the boiler pressures to increase, 

enabling increasingly larger ∆Pset. This flexibility in starting is advantageous compared to CPL 

and LHP systems. 

 

Figure 5.6 shows the result of the PTL being over-charged with 170 g of refrigerant, or 52% 

vapor. Heat was supplied to the boilers at 500 W and the condenser was set to 15°C. The 

pressure history indicates that the ∆P is highly pressure limited, relying more on the 

pressurizing boiler to increase ∆P since the emitted pulse cannot exchange heat with the 
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condenser. This is due to the condenser being flooded with excess refrigerant. The average 

boiler pressure (P) and temperature (TB) continue to increase and the test is aborted. 

Photographs of this experiment are provided in Figure E.2, Appendix E, and video footage is 

provided in Appendix G.3. 

 

Figure 5.5 PTL start-up from a low ∆Pset of 1 bar.  

Figure 5.6 PTL start-up with high charge mass. Large VTL with x = 0.52, Q = 500 W and 

TW1 = 15°C. The system pressure increases, and the test is aborted. 

Figure 5.7 shows the result of an under-charged PTL with 80 g of R-134a, or 79% vapor. Heat 

was supplied to the boilers at 300 W and the condenser was set to 15°C. The pressure history 

indicates that the ∆P is both condenser and pressure limited. Since the system is under-charged, 

the pulsed refrigerant tends to collect in the condenser which is approximately 5°C colder than 

the ambient LRL. A pulse results in a small amount of refrigerant vapor in the LRL being 

injected into the lower pressure boiler. Subsequently, the boilers cannot pressurize and increase 
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in temperature since evaporative cooling is limited. The condenser cannot depressurize any 

further than the saturated temperature limit. The average boiler temperature (TB) continues to 

increase and the test is aborted. 

Figure 5.7 PTL start-up with low charge mass. Large VTL with x = 0.79, Q = 300 W and 

TW1 = 15°C. The boiler temperature increases, and the test is aborted. 

5.2.3 PTL – asymmetric operation 

The PTL operated asymmetrically in a number of experiments. Symmetric operation is 

characterized by approximately isothermal boilers which pressurize and depressurize at 

approximately the same rate to reach similar maximum and minimum pressures. Approximately 

equal amounts of refrigerant are injected into each boiler with each pulse. Asymmetric operation 

is characterized by each boiler operating between different maximum and minimum pressures 

with the refrigerant mass unevenly distributed around the loop. One boiler consistently receives 

a different mass of refrigerant to the other.  

 

The three primary causes of asymmetric pulsing include: 

 

1. Uneven heating of the boilers 

This can occur for thermally decoupled boilers which are exposed to different heat 

sources. This was not the case with the current set-up. 

 

2. Step changes in the operating conditions 

The working fluid can be unevenly distributed due to transient changes in ∆Pset or Q 

during testing. A larger increment (or step change) in ∆Pset, affects the subsequent mass 

injection into the alternate boiler. As the alternate boiler receives more mass than the 

one that preceded it, it cools and takes longer to pressurize. This could be the cause of 

the uneven mass distribution seen in Figure 5.8. 
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3. Incorrectly calibrated check valves 

An incorrectly calibrated boiler inlet check valve will require a different cracking 

pressure in order for it to operate, and may close prematurely. In this case, one of the 

boilers is consistently charged with a lesser mass of refrigerant. The data indicate that 

the asymmetry experienced in this study is unbiased therefore check valve calibration is 

unlikely to be the cause. 

 

Figure 5.8 shows the effects of asymmetric operation. For a constant Q of 400 W, and ∆Pset 

ranging from 3 bar to 9 bar, the pressure histories for the two boilers (P1 and P2) occur between 

different maximum and minimum pressures. A closer view of the pressure history from 1860 s 

to 2100 s is shown. Boiler 1 initially operates at approximately 6°C higher temperature than 

boiler 2. The trend indicates that boiler 1 is initially pulse limited where it is under mass and 

relies on P1 to increase in order to generate the ∆P. The pressure oscillates between 6.5 bar and 

13.5 bar. Boiler 2 pressurizing is initially condenser limited where it is over mass and relies on 

P1 to decrease in order to generate the ∆P. The pressure oscillates between 8.6 bar and 11.5 bar.  

 

A level of feedback control can mitigate asymmetric operation and improve system 

performance. The ∆Pset in this test was intermittently decreased from 5 bar to 4 bar during P1 

pressurizing, for three pulses occurring at 1930 s, 1970 s and 2000 s. This results in a weaker 

pulse which forces a reduced amount of refrigerant into the alternate lower pressure boiler (P2). 

TB2 starts to increase whilst TB1 starts to decrease, since boiler 1 receives comparably more 

refrigerant. The process can be repeated until the temperatures converge and the pulses become 

more symmetrical. The pulsing is notably more symmetric after 3100 s, where the two boiler 

temperatures have equalized. 

 

Feedback control was manual in this study, however it could be implemented in software to 

ensure a greater level of control. This would enable software to monitor which boiler is 

operating at a lower pressure and temperature, and then intervene to force a particular boiler to 

pulse at a different ∆Pset in an effort to distribute the refrigerant more evenly between the 

boilers. This opens up an interesting new avenue of research related to PTL operation and 

control. 
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Figure 5.8 Asymmetric pulsing. Small VTL with x = 0.65, Q = 400 W and TW1 = 20°C. 

The macro view shows the temperature and pressure response to ∆P feedback control. The 

boiler containing the lesser mass (P1) is intermittently pulsed at a lower ∆Pset forcing less R-

134a into the alternate boiler (P2). Operation becomes more symmetric. 

5.2.4 PTL – varied ∆Pset 

The pressure and temperature history of a typical experiment is provided in Figure 5.9 to enable 

a macro description of the effect of ∆Pset on the boiler temperature (TB) and the pulse frequency 

(f). The pulse frequency (f) is defined as the number of pulses achieved by the two boilers per 

second (Hz), Equation 5.2. 

 

  
         

          (5.2) 

 

In this test, the PTL had a large VTL of 52.5 cm
3
 installed. It was charged with 64% vapor at 

20°C, the heater power (Q) was set to 500 W and the condenser coolant temperature (TW1) was 

maintained at 15°C. During ∆Pset transients, the loop responded naturally by adjusting the block 

temperature (TB) and the pulse frequency (f). Adequate time was allowed between steps in ∆Pset 

for TB to stabilize. In Figure 5.9, as ∆Pset is reduced from 10 bar to 4 bar, the mean boiler 
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pressure decreases from 12 bar to 9 bar, TB decreases from 61°C to 45°C and the pulse 

frequency (f) increases from 0.108 Hz to 0.252 Hz. The results indicate that a certain ∆Pset can 

be specified to maintain TB at a desired value. 

 

A set of data plots are shown for this test in Figure 5.10 (a) and (b), where 50 seconds of data 

are displayed for ∆Pset of 10 bar and 4 bar, respectively. Referring to Figure 5.10 (a), the 

refrigerant injection, pressurizing and pulsing process is indicated on the vapor temperature 

history trend (T1) for boiler 1, whose pressure history is marked in red. At steady states the 

vapor temperature (T1) fluctuations are as high as ±4°C, whilst the block remains at an 

approximately constant temperature (TB1). A typical mass injection, pressurizing and pulsing 

process is photographed in Figure E.1, Appendix E. Experimental video footage is also 

provided in Appendix G.1and G.2. 

 

Vapor temperature inside boiler 1 (T1) varies by up to 13°C for a ∆Pset of 10 bar and up to 5°C 

for a ∆Pset of 4 bar. The block temperature (TB1) is approximately isothermal for both ∆Pset 

values and only varies by  1°C for a given steady state ∆Pset. There is noticeably less 

temperature fluctuation at lower ∆Pset. The PTL therefore enables an almost isothermal heat sink 

temperature (TB), even though it is an oscillatory cycle. 

 

Figure 5.9 Typical pressure and temperature history as a function of ∆P control. Large 

VTL with x = 0.64, Q = 500 W and TW1 = 15°C. Although pulse detail is lost, the macro view 

highlights how the boiler temperature reduces from 60°C to 45°C with a reduction in ∆Pset from 

10 bar to 4 bar. 
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Figure 5.10 Frequency and temperature response to ∆Pset. Large VTL with x = 0.64, Q = 

500 W and TW1 = 15°C. (a) ∆Pset = 10 bar, (b) ∆Pset = 4 bar. 

The relationship between ∆Pset, f, and TB is presented in Figure 5.11. An increase in ∆Pset from 

5 bar to 10 bar results in a reduced f from 0.25 Hz to 0.11 Hz and an increased TB from 46°C to 

60°C. The relationships are approximately linear. Visual inspection of the liquid injection at the 

sight glass confirms that less mass is injected with a decrease in ∆Pset. It is assumed that the 

overall circulation rate remains approximately the same (at 5 g/s) due to the increased f. Slight 

asymmetry during steady pulsing is present in this test. 
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Figure 5.11 ∆Pset vs. f and TB. Large VTL with x = 63.72%, Q = 500 W and TW1 = 15°C. 

Numerous tests were carried out with two experimental setups including a small VTL and a 

large VTL. Different power inputs (Q) and driving pressure differentials (∆Pset) were 

investigated resulting in the performance map of Figure 5.12. A range of ∆Pset from 3 bar to 

12 bar result in f ranging from 0.05 Hz to 0.42 Hz. The results marked in red were obtained for a 

PTL that had a large VTL of 52.5 cm
3
 and which was charged with 64% vapor. The condenser 

temperature was set to 15°C. To aid in this discussion, this is termed the reference set of results. 

 

The results marked in green were obtained for the same experimental setup as the reference, 

except that a lower refrigerant charge mass (or increased x) was used. Less refrigerant results in 

increased f and decreased operating temperatures, for a given ∆Pset at a constant Q of 500 W. 

 

The results marked in black were obtained for a PTL that had a smaller VTL in comparison to 

the reference (of 31 cm
3
), and which was charged with a similar vapor quality of 64.7%. The 

condenser was operated at a temperature of 20°C. In comparison to the reference, the results 

follow a flatter trend. This is due to the smaller VTL which provides less volume for a pulse to 

expand and condense into. The pulse becomes condenser limited as the condenser now has a 

larger liquid fraction which effectively reduces the available condenser area. The f remains low 

at reduced ∆Pset as the depressurizing boiler takes longer to reduce in pressure in comparison to 

the reference. The results indicate that a lager VTL has a similar effect on f as a lower charge 

mass (or increased x) does, which confirms the findings of Weislogel and Bacich. [16].  

 

Figure 5.13 illustrates the effect of varying ∆Pset on the boiler block temperature (TB). TB 

generally increases with an increase in ∆Pset, even though more mass is injected per pulse. This 

is due to the reduced f seen in Figure 5.12. Reduced f allows more time for TB to increase in-

between pulses. The PTL’s average heat transfer is approximately independent of ∆Pset, shown 

in Figure 5.14. The average heat transfer at the condenser is approximately 55% that of the 
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power input at the boilers (from Equation 3.12, Appendix B.4), due to heat loss to the 

environment and pressure dissipated in overcoming the system head. 

  

 

Figure 5.12 Frequency vs. ∆Pset for a range of heat inputs, charge mass and VTL size. 

 

Figure 5.13 Block temperature vs. ∆Pset for a range of heat inputs, charge mass and VTL 

size. 

 

Figure 5.14 Average condenser heat transfer vs. ∆Pset for a range of heat inputs, charge 

mass and VTL size. 
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The results obtained are compared with various PTL performance curves generated by 

Weislogel and Bacich [16,2] and Brooks et al. [4], in Figure 5.15 and Figure 5.16. The figures 

represent a complete operating window, or map, for the different PTL configurations tested. 

PTL operation is bounded by the dashed lines representing the circulation limit (above), pulse 

limit (on the left and right) and the heat leak limit (below). As an operating point changes from 

inside the window to outside the window, steady states become difficult to achieve. Another 

limit not described here is the refrigerant charge mass limit. 

 

The pulse limit on the left of Figure 5.15 is due to a low ∆Pset that is unable to overcome the 

system head losses resulting in less mass injection per pulse. Lesser mass injection increases the 

operating temperature (TB) and frequency (f). For a reduced ∆Pset the f increases (Figure 5.15) 

and TB decreases (Figure 5.16). The performance of the PTL in this study was limited to the 

servo valve frequency which operated at a maximum of 0.42 Hz. This prevented investigation at 

∆Pset below 3 bar since higher frequencies were required. The pulse limit on the right is due to 

insufficient mass in the boiler which therefore cannot pressurize to meet the required ∆Pset. 

 

The circulation limit is the maximum circulation rate that can be achieved for a given PTL and 

working fluid. The working fluid is limited by its critical heat flux capacity. The limit can be 

increased by improving heat transfer at the boilers, reducing flow resistances, and increasing 

∆Pset. 

 

The heat leak limit occurs at low f operation which results in heat creep from the boilers into the 

LRL. Refrigerant upstream of the one-way check valve is preheated to a vapor resulting in 

decreased mass injection. The pressurizing boiler subsequently contains insufficient mass and 

cannot pressurize to meet the required ∆Pset. TB also increases as less heat is removed from the 

boilers. 

 

A small heater could be integrated in the commercial PTL application to avoid the system from 

shutting down when the heat load is not providing sufficient thermal energy. This would prevent 

the operating point from passing through the heat leak limit (by increasing f) or the right hand 

pulse limit (by increasing the ∆Pset). When the heat load drops below a threshold value, for 

instance 100 W, the auxiliary heater could be activated to provide an additional 100 W, to 

maintain an adequate ∆Pset. The PTL would then be classified as an active system due to the 

electrical energy required to power the heaters. This is common practice with other passive 

systems such as LHPs and CPLs, in order to provide reliable operation. These results highlight 

an important design requirement for the pulse refrigeration system (PRS) since the ∆Pset must be 

maintained to drive the ejector. 



76 

 

 

Figure 5.15 Frequency vs. ∆Pset performance map including results from the literature 

[16,4]. The operating envelope is indicated by the dashed lines and can be used to design a PTL 

for a particular application. Increased Q improves the circulation limit, the pulse limit and f. 

 

Figure 5.16 TB vs. ∆Pset performance map including results from the literature [16]. 
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5.2.5 PTL – varied heater power input 

Table 5.1 provides the average and local heat flux values applicable to this work. The average 

heat flux (q ave) is computed using the total surface area inside the boiler for different heater 

power inputs. The total surface area is approximated as the circumference of the boiler chamber 

multiplied by the length, giving 138.2 cm
2
. Experimentally, the boilers are partially filled with 

liquid (to approximately 20%). The local heat flux (q local) was calculated by Weislogel et al. [2] 

using the wetted surface area and compared with the critical heat flux limit of 43 W/cm
2
 to 

determine the maximum heat that can be supplied to the boilers. The local heat flux calculated 

here (29 W/cm
2
 for 800 W power input) approaches that of the theoretical heat flux limit. The 

maximum heat transfer achievable with the current boiler design is 1189 W. Modification of the 

boiler design to include a greater wetted surface area, would result in the lowering of q local, 

which would enable operation at increased power inputs. 

Table 5.1 Average and local heat flux compared with the theoretical maximum 

Power, W Atotal, cm
2
 Awetted, cm

2
 q ave, W/cm

2
 q local, W/cm

2
 

200.0 138.2 27.7 1.5 7.2 

800.0 138.2 27.7 5.8 29.0 

1189.0 138.2 27.7 8.6 43.0 

(theoretical limit, Zuber Eq. [47]) 

 

Power input (Q) versus the average boiler temperature (TB) for two experimental setups (small 

VTL and large VTL) is graphed in Figure 5.17. The graph indicates that TB only varies by a 

maximum of 7.4°C for the given Q range. A PTL with a larger VTL offers improved isothermal 

operation (constant TB) for a given ∆Pset and varying Q. This is indicated by the red curves 

varying less in temperature than the black curves. Furthermore, the boiler temperature is less 

affected by increasing Q than it is by increasing ∆Pset. Referring to the PTL with the larger VTL 

(in red), increasing ∆Pset from 5.7 bar to 10.1 bar whilst supplying Q at 500 W results in a TB 

increase of 11.5°C. In contrast, increasing Q from 300 W to 700 W, whilst maintaining ∆Pset at 

5.7 bar, results in an increase in TB of 2.3°C. This is due to f adjusting to the heat load, as shown 

in Figure 5.18, where f is directly proportional to Q. The frequency for the PTL with a smaller 

VTL is less dependent on Q. 

 

Figure 5.19 shows that the average heat transfer at the condenser (Appendix B.4) is directly 

proportional to the power input at the boilers (Q) and approximately independent of ∆Pset. The 

PTL is able to maintain the heat transfer from a load, independent of ∆Pset. The frequency 

simply adjusts to maintain the required heat transfer from the source to the sink. For application 
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as a TMS, a temperature sensitive device generating variable heat loads can be maintained at an 

approximately isothermal (constant) temperature by keeping ∆Pset constant. The condenser 

effectiveness is calculated as 0.98 for the case where Q was 500 W and ∆Pset was 10.1 bar. 

 

 

Figure 5.17 Power input (Q) vs. boiler temperature (TB) for varied ∆Pset.  

 

Figure 5.18 Power input (Q) vs. pulse frequency (f) for varied ∆Pset.  

 

Figure 5.19 Power input (Q) vs. average condenser heat transfer for varied ∆Pset. 
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5.3 Summary 

The PTL design considerations included incorporating the components into the design of the 

PRS prototype. The components are modular and can be reconfigured by simply interchanging 

fittings, valves and transport tubing. The boilers manufactured here are at least twice as large as 

previous versions developed by Brooks et al. [4] and du Clou et al.[21]. This increases the 

pump capacity, or circulation limit, available for the PTL and the PRS, with increased ∆Pset. The 

custom condenser enables accurate temperature control and the instrumentation permits 

calculation of heat transfer.  

 

Refrigerant R-134a was chosen as the working fluid for the PTL and the PRS. It is well suited to 

the expected operating pressures and temperatures, and enables cooling at below freezing 

temperatures in the PRS evaporator section. The only negative aspect of R-134a is that it is 

classified as a wet fluid. Expansion at the ejector inlet nozzle in the PRS may produce 

suspended liquid droplets that can affect performance. 

 

PTL performance was experimentally investigated for a range of driving pressures (∆Pset) and 

power inputs (Q). The increased boiler capacity improved PTL operation for increased Q and 

∆Pset up to 800 W and 14 bar, respectively. A maximum local heat flux of 28.9 W/cm
2
 was 

demonstrated. For a constant Q, a decreased ∆Pset results in an increased pulse frequency (f) and 

a reduced boiler temperature (TB). For a constant ∆Pset, increased Q results in an increased f and 

an approximately isothermal TB. Also, a smaller VTL enables operation at increased ∆Pset and 

decreased f for a given Q, but with an increased TB. A smaller VTL requires a reduced charge 

mass to prevent condenser limited operation. 

 

The PRS in Chapter 6 must operate near the right hand pulse limit and the circulation limit 

identified in Figure 5.15 to benefit from the increased ∆P and f. Increased Q provides a degree 

of superheat which prevents condensation in the ejector during expansion. A high ∆Pset is also 

necessary to drive the PRS ejector. The ∆Pset can initially be as high as 12 bar and reduce to 0 

bar within a few seconds. Due to the highly transient nature of the pulses, careful consideration 

of the ejector design and predicting its performance is necessary. This is carried out using two 

one-dimensional analytical models.  
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6 PULSE REFRIGERATION SYSTEM PROTOTYPE 

The objective of this chapter, which is an extended version of a paper by du Clou et al. [59], is 

to develop the PRS prototype (Figure 2.18, repeated below). The PRS is an evolution of the 

PTL that incorporates a novel ejector-based pump-free cooling loop. It is driven by waste heat 

or solar thermal energy, can operate independently of gravity, and is suitable for both terrestrial 

and space application. A cooling effect is derived by supplying the primary inlet to an ejector 

with unsteady pressure pulses from the PTL boilers. Flow through the ejector is intended to 

entrain and raise the pressure of the refrigerant from the cooling loop evaporator, thereby 

replacing the compressor required in conventional VCR.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.18 Schematic of PRS variant I. Pulses from the PTL boilers are directed through 

the ejector cooling loop.  

 

The transient application results in the ejector underperforming for most of the pulse. Simple 

ejector design and performance analysis models were developed as part of the primary research 

goals, to characterize the ejector’s operation in the PRS (Appendix F). The design code permits 

optimization of the ejector geometry for steady flow conditions, whereas the performance code 

permits investigation of the ejector geometry for unsteady, two-phase flow applications. The 

performance code is a significant component of this work as it provides a simple method of 

mapping the quasi-steady ejector operating modes, through the transient flow regime. The two 

models are implemented in MATLAB, and account for homogeneous two-phase flow by 

incorporating NIST REFPROP real vapor data subroutines (they do not rely on isentropic gas 

relations). The models are validated with experimental data from the literature. 
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A prototype of the ejector-based PRS was constructed, incorporating the components from the 

PTL. Additional components include the ejector and the evaporator branch with an expansion 

valve and the associated instruments. Two configurations of the same device were 

experimentally tested to investigate the concept. 

6.1 Ejector theory 

An ejector is a mechanically simple mixing device that has no moving parts, which provides 

compression to a secondary stream and is analyzed using compressible flow theory. A few 

common applications include producing a vacuum, emptying storage tanks, and thermo-

compressors that are used to raise the pressure of a secondary lower pressure stream. Benefits of 

the ejector include simple construction, ease of installation, no moving parts, no maintenance 

and a long operational life. The primary disadvantage is that the fixed geometry does not allow 

for variation in the operating parameters. 

 

The ejector depicted in Figure 6.1 is comprised of four sections: the converging-diverging (CD) 

nozzle at the primary inlet, the suction chamber housing the secondary inlet, the constant-area 

mixing chamber and the recovery diffuser. During steady operation, the primary flow expands 

and accelerates through the CD nozzle to reach supersonic velocity (from p0 to e). The 

supersonic low pressure flow at the outlet of the nozzle (from e to 1) entrains a secondary flow 

(from s0 to s1), which is at some intermediate pressure. The flows mix depending on the mixing 

theory, and a normal shock wave forms in the constant area chamber resulting in pressure 

recovery. Further pressure is recovered in the diffuser (from 2 to c) due to compression. The 

design of the inlet CD nozzle strongly influences the performance of the ejector. 

 

 

 

 

 

 

 

 

 

 

Figure 6.1 Ejector schematic. The primary flow expands in the CD nozzle and entrains a 

secondary flow. Pressure is recovered with a normal shock wave during steady operation. [59] 
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The two primary geometric design ratios include the nozzle area ratio (Ae/At) and the ejector 

area ratio (Am/At), where Ae is the CD nozzle exit area, At is the CD nozzle throat area and Am is 

the ejector mixing chamber area. The ejector is classified using three performance ratios 

including the entrainment ratio (ω), the compression ratio (ψ) and the driving pressure ratio (φ), 

which are described in Equations 6.1 to 6.3. The entrainment ratio (ω) is the ratio of the ejector 

secondary mass flow rate to the motive mass flow rate. The ejector compression ratio (ψ) is the 

ratio of the downstream pressure (at the condenser) to the secondary inlet’s stagnation pressure, 

Ps0 (at the evaporator). The driving pressure ratio (φ) is the ratio of the condenser pressure to the 

stagnation pressure (Pp0) at the ejector’s primary inlet. Note that Pp0 is analogous to the boiler 

pressure that feeds the ejector (P1 or P2). 

 

              (6.1) 

             (6.2) 

              (6.3)  

 

The ejector operating modes are identified in Figure 6.2 and are dependent on the operating 

driving pressure ratio (φ). During critical mode operation, the condenser back pressure is 

sufficiently low (or the driving pressure is sufficiently high) resulting in both the primary and 

secondary ejector streams being choked (Fabri choking) [62]. This results in a constant 

maximum entrainment ratio (ω). If φ is increased beyond a critical point, φ*, (by increasing the 

condenser pressure or decreasing the primary inlet pressure) the ejector enters the subcritical 

mode of operation. The normal shock wave regresses along the constant area chamber into the 

mixing chamber, and into the CD nozzle. The secondary fluid becomes unchoked, reducing ω. 

Entrainment continues to decrease as φ approaches unity, where back-flow may occur. 

 

 

 

 

 

 

 

 

 

Figure 6.2 Ejector operating modes dependant on the driving pressure ratio, φ. [63] 
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42.8 cm
3
, respectively. The ejector is therefore subject to a transient, blow-down effect 

characterized by an initially strong but decaying pressure pulse. Figure 6.3 shows such a PTL 

pulse, that decays from 18.5 bar to a condenser pressure of 7.2 bar (∆Pset = 11.3 bar). P2 

resembles the pressure at the primary inlet to the ejector, Pp0, and Pc is the downstream pressure 

at the condenser. The ejector pressure ratio (φ) is seen to increase from 0.38 to unity within 2 s, 

as the pulse expands and condenses. This transient process limits entrainment at the ejector 

secondary inlet to a finite period at the start of the pulse. 

 

 

 

 

 

 

 

Figure 6.3 PTL pulse showing anticipated ejector driving pressure ratio (φ) increasing to 

unity within 2 s as the pulse pressure (P2) falls to meet the lower condenser pressure (Pc). 

6.2 Ejector literature 

The design of ejectors for various ECS is widely reported with different theories of operation. A 

comparison of ejectors designed and tested by various researchers is presented in Table A.10 of 

Appendix A. These ejectors were designed for and investigated under steady flow conditions. 

 

Although much research has been carried out on ejectors analytically 

[38,63,31,64,29,65,46,66,67,25], computationally [68,69,27,70] and experimentally [71,36,27], 

there is still not a well defined method to design such a device for operation under transient 

conditions (as is expected with the PRS), especially where two-phase flow is involved. Mostly, 

the research focuses on single and two-phase ejectors under steady state operating conditions. 

Bartosiewicz et al. [69] concluded that a one-dimensional ejector model cannot accurately 

predict the performance at subcritical operating modes. This is due to the one-dimensional 

ejector models being constrained by the requirement of having the normal shock wave locate 

itself in the constant area section. CFD models are not limited by this constraint. A number of 

authors including Bartosiewicz et al. [69] and Park et al. [70] have used CFD models to predict 
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ejector performance during off-design operation, where the shock wave regresses into the 

ejector suction chamber.  

 

It is evident that ejector performance is vital to the functioning of the PRS proposed here, and is 

the limiting component in the system design. In this work, two analytical ejector models are 

developed that i) compute the required ejector geometry for steady state operation and, ii) 

predict the performance of the ejector during quasi-steady transients. The second model is a first 

step towards modeling ejector transient performance using a one-dimensional approach. 

6.2.1 Nozzle 

The nozzle at the inlet to the ejector enables expansion of the motive flow, converting enthalpy 

into kinetic energy. For a real (compressible) fluid, a converging-diverging (CD) nozzle enables 

supersonic flow as the motive fluid is able to expand and accelerate further in the diverging 

portion of the nozzle. 

 

Variable ejector nozzle back pressure ratio (PR) has received little attention in the literature as it 

is not an important design feature for ejectors operating in the fully developed flow regime. In 

this study the PR is a critical parameter and is defined as the ratio of the CD nozzle back 

pressure (P1) to the primary stagnation inlet pressure (Pp0) (Equation 6.4). For a given nozzle 

area ratio (Ae/At), the PR determines the ejector operating modes. Note that the ejector pressure 

ratio (φ) resembles the pressure ratio across the entire ejector whilst PR resembles the pressure 

ratio across the CD nozzle. A nozzle that is perfectly expanded results in ejector critical mode 

operation. 

 

              (6.4) 

where,              

 

A key geometric parameter for an ejector is the CD nozzle exit to throat area ratio (Ae/At). 

Selvaraju et al. [72] and Sankarlal et al. [73] designed miniature ejectors for an ECS having an 

Ae/At of 2.6. This is comparable with most of the literature which give area ratios between 2.5 

and 3.9 [63,71,31,74,26,68,72,73,75,76]. Zhu et al. [74] investigated the nozzle diverging angle 

and the nozzle exit position (NXP) using computational fluid dynamics (CFD). The CD nozzle 

diverging angle must increase with an increase in driving pressure (P1). The NXP is not only 

proportional to the diameter of the constant area section (Dm) but must also increase with a rise 

in P1 to maintain adequate performance. Small diverging angles are important in controlling the 

rate of expansion and preventing flow separation. Common diverging angles are between 4° and 
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10° [66,72,68,27,30]. The NXP (shown in Figure 6.1), provides the best performance when it is 

located at a distance of 1.5 to 3.4 times the diameter of the constant area section (Dm) before the 

inlet of the constant area section [74,68,71,63]. Some analytical models have incorporated 

nozzle isentropic efficiencies which are in the range of 0.8 to 1.0 [31,26,63,72,29,76,77]. 

 

Nozzle operating modes 

 

The CD nozzle critical modes are depicted in Figure 6.4 as a function of the PR. (The CD nozzle 

critical modes should not be confused with the ejector critical mode of operation in Figure 6.2). 

In conventional nozzle theory flow is induced by decreasing the PR by way of reducing the back 

pressure (P1) at the nozzle exit. For application in a PRS ejector, the CD nozzle PR is affected by 

the ejector driving pressure ratio (φ). It is therefore subject to changes in both the supply 

pressure (Pp0) at the boilers and the back pressure (Pc) at the condenser. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.4 Compressible flow theory for converging-diverging nozzle showing critical 

operating modes [78] 
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ejector. A slight increase in the PR from the third critical point (3
rd

 < PR < 2
nd

 critical) results in 

the flow being over-expanded (Pe < P1) with a complex series of supersonic wave motions, or 

non-isentropic oblique shocks. The oblique shocks occur outside the nozzle and are weaker than 

normal shocks. The angle of the shock adjusts to produce the required pressure rise to meet P1. 

The resulting flow is still supersonic if the oblique shocks are weak. Stronger oblique shocks 

induce mixing layer separation resulting in loss of energy and a marked pressure increase [69].  

 

For a CD nozzle operating at its second critical point, a normal shock is located at the exit plane 

resulting in a pressure increase that is precisely required to meet the back pressure (P1). This is 

the strongest type of shock that could occur during the transient operation, and must be avoided. 

For a PR in-between the first and second critical point (1
st
 < PR < 2

nd
 critical) the normal shock 

locates itself inside the diverging section such that the pressure change before the shock, across 

the shock and downstream of the shock results in the exit pressure (Pe) being equal to the back 

pressure (P1). The first critical point represents flow that is choked at the throat with a Mach 

number of one, and is subsonic for both the converging and diverging sections. Any PR above 

the first critical point (PR > 1
st
 critical) results in reduced mass flow rate and subsonic flow 

throughout the CD nozzle.  

 

For the PRS, the flow through the ejector nozzle should be perfectly expanded to the 3
rd

 critical 

point to achieve the best performance, minimizing the non-isentropic shocks. Due to the 

transient ejector driving pressure ratio (φ) shown in Figure 6.3, the ejector in the PRS will only 

function at its critical mode for a finite period, at the start of each pulse. Ideally, a variable 

geometry nozzle would enable optimal operation during blow-down. This was reported by 

Eames et al. [28]. As φ increases to unity, the CD nozzle exit diameter can be reduced to 

maintain supersonic low pressure flow at the outlet whilst avoiding non-isentropic shock waves. 

However, a fixed geometry nozzle is selected for the PRS due to the small scale manufacturing 

limitations required of a laboratory scale ejector. 

6.2.2 Suction chamber 

The one-dimensional approach to ejector design assumes that the secondary inlet feeds the 

ejector axisymmetrically around the entire circumference. This assumption may lead to an over 

prediction of the entrainment ratio (ω). Common isentropic mixing efficiencies range from 0.85 

to 0.95 [31,63,72,77]. 
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There are two theories that can be applied to the mixing of the primary and secondary streams: 

 

i) Constant pressure mixing 

 

Constant pressure mixing theory was developed by Keenan et al. [79] and is more common in 

the literature. This theory assumes that the primary and secondary fluids expand to the same 

pressure and mix before entering the constant area section. The authors developed a one-

dimensional model incorporating this theory and applying the conservation of mass, energy, and 

momentum as well as ideal gas assumptions. Eames et al. [26] and Huang et al. [63] modified 

the one-dimensional ejector model developed by Keenan et al. [79] to include isentropic 

efficiencies. These models, however, rely on ideal gas relations and cannot account for two-

phase flow. 

 

ii) Constant area mixing 

 

Fabri and Siestrunck [62] theorized that a fictitious secondary throat is formed between the 

primary core flow and the converging channel of the ejector housing (shown in Figure 6.1). The 

secondary flow expands, without mixing, along the fictitious duct to reach sonic velocity, 

resulting in the double choking condition. Munday and Bagster [80], Kandil et al. [25] and 

various other researchers have developed one-dimensional models incorporating Fabri choking 

theory. The model developed by Kandil et al. [25] accounts for real vapor data, but does not 

consider isentropic efficiencies. 

6.2.3 Constant area chamber  

The design of the constant area chamber depends on three key ratios (Am/At, Lm/Dm and 

NXP/Dm). The area ratio of the mixing chamber to the nozzle throat (Am/At) commonly ranges 

from 4 to 11.5 [63,66,74,73,70,68,72,81,76]. For optimal mixing of the two fluids to occur, the 

length to diameter ratio of the mixing chamber (Lm/Dm) is commonly 10 [66,72,73,70]. During 

critical operation a normal shock wave forms towards the end of the constant area section 

resulting in pressure recovery. Mixing chamber isentropic efficiencies can range from 0.8 to 1.0 

[26,63]. 

6.2.4 Diffuser 

Pressure increases at constant entropy in the diffuser due to the increasing cross-sectional area. 

The diffusing angle commonly ranges from 6.3° to 9.4° [63,72,76]. The diffuser isentropic 

efficiency commonly ranges from 0.8 to 1.0 [31,26,63,72,29,76]. 
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6.3 Governing equations of the ejector analytical model 

The design and performance of the ejector is addressed through the development of an 

analytical computational model consisting of two parts; a design code (Appendix F.2) and a 

performance analysis code (Appendix F.3). The codes are implemented in MATLAB R2006b 

[82] with real vapor data sub-routines from NIST REFPROP V7.0. [83]. The software is used to 

investigate the relationship between the ejector’s geometry, operating conditions and the 

performance under two-phase, transient flow conditions, as encountered in the pump-free PRS. 

 

The fluid properties are iteratively calculated at various locations along the ejector axis using 

compressible flow theory with the conservation of mass, energy, and momentum described by 

Equations 6.5 to 6.7 [23]. These solve for the one-dimensional geometric profile of the ejector. 

The energy equation includes an isentropic efficiency term, ηis , to account for friction losses.  

 

       (continuity)   (6.5) 

 

      
    
    (energy)  (6.6) 

 

       (momentum)   (6.7) 

 

The sonic velocity (a) and Mach number (M) for a real gas are calculated using Equations 6.8 

and Equation 6.9. The flow area and diameter are calculated using Equations 6.10 and 6.11. 

 

               (6.8) 

 

          (6.9) 

 

              (6.10) 

 

            (6.11) 

 

The velocity of the mixed flow, Vm,  is calculated by combining the momentum of the two 

streams in Equation 6.12 [26], where Vp and Vs are the flow velocities of the primary and 

secondary fluid, and     and     are their respective mass flow rates. The mass flow rate of the 

mixed fluid,    , is obtained from Equation 6.1. 
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      (6.12) 

 

If the mixed flow Mach number is greater than unity, the pressure after the shock wave (Py) is 

iterated until the calculated density after the shock (ρy) equals the look up density [25,38,84]. 

The flow velocity after the shock (Vy) is calculated from the conservation of mass and 

momentum for the iterated pressure (Py), in Equation 6.13, where Pm and ρm are the pressure and 

density of the mixed flow before the shock. The enthalpy after the shock (hy) is calculated in 

Equation 6.14. Conservation of mass across the shock, which occurs at constant area, gives the 

calculated density after the shock, Equation 6.15. The calculated density is then compared to the 

look-up density (obtained from REFPROP using the iterated pressure and the calculated 

enthalpy). The solution converges when the look-up density is less than the calculated density.  

 

   
        

     
    

     (6.13) 

                 
    

   
    

     (6.14) 

             
    

  
    (6.15) 

The following assumptions apply to both models [78]: 

 

1. For steady flow, the fluid properties are constant across the cross-section at any given x-

coordinate. 

2. Certain fluids (like R-134a) condense when they expand due to the isentropic curve 

crossing through saturated vapor line into the two-phase region of the pressure-enthalpy 

diagram. The resulting mixture quality is high, x > 0.95, which gives a low liquid 

volume faction. Under these conditions it is reasonable to assume that the two phase 

mixture is homogeneous with no slip between phases. The pressure and temperature of 

the vapor and liquid fractions are equal. 

3. To account for non-ideal losses due to friction and mixing, isentropic efficiency 

coefficients are included in the code. When set to 1, adiabatic flow is assumed 

everywhere except across shocks where there is an entropy rise. 

4. The thickness of the shock is negligible. 

5. Kinetic energy at the primary and secondary reservoir is negligible (at stagnation). 

6. The mixing of the primary and secondary streams is assumed to occur at constant 

pressure after the secondary stream has expanded to the hypothetical throat. 

7. Flow separation from the boundary is ignored, assuming small angles and polished 
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surfaces. 

8. The ejector walls are adiabatic. 

6.4 Steady-state ejector design model 

The design code permits optimization of the ejector geometry for a given set of steady flow 

conditions. The model geometry is optimized by using both the constant pressure mixing theory 

developed by Keenan et al. [79] and the Fabri choking theory developed by Fabri and 

Siestrunck [62]. The model is validated against numerical and experimental results from the 

literature. 

 

A number of one-dimensional analytical models have been developed with the purpose of 

comparing different refrigerants, and to investigate the design of ejectors for different operating 

conditions [26,29,63,84,38,80,64]. The model developed here, generates the optimum ejector 

geometry given a required entrainment ratio and steady operating inputs at the primary and 

secondary inlets. A user defined nozzle back pressure ratio, PR, is imposed and the model 

assumes that the inlet nozzle operates at this critical point, where Pe = P1. The pseudo-code 

solution flow chart is provided in Figure 6.5. Routine application of the governing equations, 

with real vapor data from NIST REFPROP, solves the flow at each point along the ejector axis. 

The normal shock wave is captured by iteratively increasing the pressure across the shock, and 

finding the local fluid properties using the conservation of mass and momentum for the control 

volume surrounding the shock, until the calculated density after the shock is equal to or greater 

than the reference density. 

 

One input variable (Pp0, Ps0, Pc, x0, xs, or   )  can be varied while keeping the others constant to 

obtain a range of design graphs. The primary independent variable in the PRS is ∆Pset, therefore 

the primary ejector variable investigated is Ppo. The design is completed by selecting suitable 

lengths or converging diverging angles from the literature. A list of published ejector geometric 

profiles, including the angles, is provided in Table A.10, Appendix A.  
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Figure 6.5 Pseudo-code flow chart for the ejector design model. [78] 

6.4.1 Design model validation 

In an effort to validate the two-phase ejector model, its output was compared with experimental 

and analytical data from Huang et al. [63]. To this end, refrigerant R-141b was selected as the 

working fluid and optimal ejector area ratios (Am/At) were determined by varying the operating 

pressure and entrainment ratio (ω). The results were then compared on a series of 45° plots to 

assess deviation from the output of Huang et al. [63]. Three generator pressures (Pp0) including 

400 kPa, 465 kPa, and 537 kPa (saturated vapor) were investigated, each with varied ω. 

 

Figure 6.6 graphs the modeled area ratios against the experimental area ratios of Huang et al. 

[63]. The distribution of data about the diagonal suggests that the model developed here closely 

follows the output of Huang et al. [63] with a mean error of 6%. 

 

Figure 6.7 graphs the modeled area ratios against the analytical results of the model developed 

by Huang et al. [63], where the fluid properties are solved using the isentropic relations rather 



92 

 

than the governing equations. A systematic error of 8.5% is seen in the figure and may be 

attributed to this model not including an empirical loss coefficient. The results also confirm that 

the ejector area ratio is proportional to the entrainment ratio. 

 

 

Figure 6.6 The design model area ratios are compared to the experimental results of Huang 

et al. [63]. The model shows good agreement with the experimental results. 

 

Figure 6.7 The design model area ratio results are compared with the results from the 

model developed by Huang et al. [63]. The models are directly proportional but are offset by a 

constant term. 
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6.4.2 Design model results 

The design of a suitable ejector for application in the PRS is investigated using the design 

model. The results are presented in Figures 6.8 to 6.9, where R-134a is selected for the analysis. 

The boiler pressure that feeds the primary inlet to the ejector is varied from 18 bar to 10 bar. 

The ejector operates with a secondary inlet pressure of 4 bar, a primary mass flow rate of 5 g/s, 

an entrainment ratio (ω) of 0.2 and a CD nozzle back pressure ratio (PR) of 0.1. The tube 

diameters upstream and downstream of the ejector are constrained by the PRS transport lines 

which are 1/4” (4.55 mm ID) at the primary inlet and exit, and 1/8” (1.8 mm ID) at the 

secondary inlet. 

 

Figure 6.8 illustrates the ejector geometry required for different supply pressures, whilst 

maintaining a fixed PR and ω. The results indicate that an increased supply pressure requires a 

smaller ejector to expand the working fluid to the required PR. In other words, a decreased φ 

will result in under-expanded flow for a fixed CD nozzle and PR.  

 

Referring to the 18 bar results (red trace) in Figure 6.9, the cross section diameter at different 

axial locations along the ejector is plotted against the static pressure at that location. The 

working fluid initially expands from the 4.5 mm inlet to the 0.92 mm throat to reach sonic 

velocity. The flow continues to expand to the CD nozzle exit with a diameter of 1.51 mm. The 

secondary flow is entrained by the low pressure region and is choked by the hypothetical throat 

that is formed between the core flow and the ejector wall. The primary and secondary flow then 

mix at constant pressure and the diameter of the flow increases to 1.76 mm. A shock wave in 

the constant area section (shown by vertical lines in the plot) raises the pressure of the working 

fluid. The diameter increases to the 4.5 mm diffuser outlet, resulting in further pressure 

recovery. For a decreased supply pressure of 14 bar (yellow trace), the ejector CD nozzle throat, 

exit and mixing chamber diameters must increase by 13.6%, 12.6% and 9.5% respectively, in 

order to maintain the required nozzle back pressure ratio (PR), entrainment ratio (ω) and mass 

flow rate (   ).  

 

Figure 6.10 illustrates the static pressure and the Mach number contour along the ejector axis. 

The normal shock is evident at position 3 along the horizontal axis, indicated by the step 

increase in static pressure with a decrease in Mach number. The straight line plots in Figure 6.9 

and Figure 6.10 are due to the limited sample points solved by the model; realistically the 

pressure and Mach number plots follow a curve. 

 

Similar design graphs can be generated by keeping the feed pressure constant and varying other 
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independent variables including Ps0, Pc, x0, xs, or    . A selected geometry in Figure 6.8 is 

analyzed using the ejector performance model in section 6.5.2, where it is supplied with a 

transient pressure resembling a pulse from one of the PTL boiler chambers. The model 

simulates the operating modes of the CD nozzle at the inlet to the ejector enabling the prediction 

of the ejector performance. 

 

 

Figure 6.8 Ejector geometry designs for a range of steady inlet stagnation pressures. [78] 

 

Figure 6.9 Static pressure plot at different cross-section locations (diameter) along the 

ejector axis. The vertical lines represent normal shock waves in the constant area section. 

(100 kPa = 1 bar). [78] 
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Figure 6.10 Static pressure and Mach number profiles along the ejector axis (100 kPa 

= 1 bar) for varied input stagnation pressure. [78] 

6.5 Transient ejector nozzle performance model 

The performance analysis code (in Appendix F.3) permits investigation of an ejector’s CD 

nozzle with unsteady, two phase flow. It predicts the ejector nozzle operating modes and the 

type and location of the non-isentropic shock waves. It can be used as a tool in predicting if (and 

when) ejector entrainment is achieved. A quasi-steady approach is followed to map the 

performance of the device through the transient flow regime. This model is unique in being able 

to solve for the transient operating modes of the CD nozzle at the ejector inlet which enables 

interpretation of the ejector operating modes from the Mach number and pressure profiles. To 

the author’s knowledge, there is no analytical model available for analyzing the ejector 

performance in a transient blow-down application. The oblique shocks are characterized by a 

complex series of supersonic wave motions that cannot be modeled using one-dimensional 

theory, although the occurrence and duration of the oblique shocks can be predicted. 

 

The code is implemented using the logic diagram in Figure 6.11. It solves for the operating 

modes of a given ejector nozzle that is fed by a depressurizing boiler, initially containing a fixed 

mass. The unsteady flow is assumed to be quasi-steady with the instantaneous flow properties 

being a function of time. At each incremental time step, a fixed mass of refrigerant leaves the 

boiler resulting in a decrease in feed pressure, temperature and density. The CD nozzle 

operating modes are solved to investigate the occurrence of non-isentropic oblique and normal 

shock waves. Although the boiler block in a PRS would operate at an approximately constant 

temperature, the rapid blow-down reduces the pressure of the refrigerant inside the vessel faster 

than thermal conduction and convection from the block to the refrigerant can take place. 

Therefore the boundary for boiler control volume is considered to be adiabatic, and the 
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refrigerant depressurizes isentropically.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.11 Transient performance logic flow chart for the analysis of unsteady flow 

through an ejector CD nozzle. [78] 
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6.5.1 Transient model validation 

The accuracy of the code was compared with an ideal gas model, using Equations 6.16 to 6.24, 

where k is the ratio of specific heats (Cp/Cv), and nitrogen as the working fluid. The ideal 

solution was compared with the real solution, which makes use of Equations 6.5 to 6.15. 

 

                                 (6.16) 

 

                                 (6.17) 

 

                        (6.18) 

 

                                   
              

 (6.19) 

 

                                               (6.20) 

 

       
                       

        (6.21) 

 

        
                            (6.22) 

 

                  
                 

      (6.23) 

 

       
            

               
    

       

              
               

            (6.24) 

 

Figures 6.12, 6.13 and 6.14 compare the real to the ideal results for the case where a 100 cm
3 

boiler containing 8 g of pressurized nitrogen (   ) is expanded through a CD nozzle, having a 

0.8 mm throat and 1.6 mm exit diameter. The back pressure for the CD nozzle is set at 40 kPa to 

simulate the required ejector suction pressure. The figures show that the output pressures, Mach 

number and the mass flow rate converge to similar results. The error ranges from 1.3% to 12%. 

The isentropic free expansion wave for under-expanded flow and oblique shocks for over-

expanded flow downstream of the CD nozzle cannot be modeled accurately using one-

dimensional theory, but the analysis does predict when they occur. 
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Figure 6.12 Static pressure at different nozzle locations during transient blow-down. The 

real gas solution (solid lines) is compared with the ideal gas solution (dotted lines) from 

Equations 6.16 and 6.22. The error ranges from 3.0% to 12%. [78] 

 

Figure 6.13 Mach number for different nozzle locations during the transient blow-down. 

The real gas solution (solid line) is compared with the ideal gas solution (dotted line) from 

Equation 6.17. The error reduces from 12% to 1%. [78] 

 

 

 

 

 

 

Figure 6.14 Choked mass flow rate reduces as the boiler empties. The real gas solution 

(solid line) is compared with the ideal gas solution (dotted line) from Equation 6.20. The error 

reduces from 11% to 1%. [78] 

0 

200 

400 

600 

800 

1000 

1200 

1400 

1600 

1800 

0 0.5 1 1.5 2 2.5 

P
re

ss
u

re
, 

k
P

a
 

Time, s 

Boiler Pressure 

Pt 

Pt_is 

Pe 

Px 

Px_is 

Py 

Py_is 

0 

0.5 

1 

1.5 

2 

2.5 

3 

0 0.5 1 1.5 2 2.5 

M
a

ch
 n

u
m

b
er

 

Time, s 

Mthroat 

Mx 

My 

My_is 

Me 

M1 

Pt,is 

Fluid = Nitrogen 

Mass = 8 g 

Volume = 100 cm
3
 

P1 = 40 kPa 

Dt = 0.8 mm 

De = 1.6 mm 

 

Pe 

Pt 

Px 

Px,is 

Py 

Py,is 

Mx 

Mt 

My,is 

Me 

M1 

    

       

My 



99 

 

6.5.2 Transient model results 

The transient model enables investigation of the dynamic behavior of an ejector’s CD nozzle 

subject to a blow-down operation. The one-dimensional model focuses on the inlet nozzle since 

it is the most important part in an ejector. The under-expanded free expansion wave and the 

over-expanded shock train cannot be captured using one-dimensional theory, but the analysis 

gives a good indication of the flow dynamics involved. The presence of shocks greatly reduces 

the motive flow velocity, and increases the pressure. For an ejector to provide maximum 

entrainment, the CD nozzle must fully expand the flow and avoid oblique and normal shocks 

that produce entropy. 

 

The results presented here pertain to the ejector geometry that is required for the 18 bar pulse 

(∆Pset = 8 bar) in Figure 6.8. The CD nozzle geometry has a 0.9 mm throat with a 1.5 mm exit 

diameter. An 80 cm
3
 PTL boiler was simulated containing 7 grams of R-134a pressurised to 

18 bar and exhausted through the CD nozzle. The results show the ejector operating modes and 

shock locations with respect to time. The back pressure (P1) downstream of the CD nozzle is set 

to 2 bar. 

 

Figure 6.15 graphs the operating modes during the transient blow-down; note the similarity to 

Figure 6.4. The quasi-steady approach tracks the shock location as it moves up the nozzle 

towards the throat. The straight line plots after the shocks are due to the limited sample points 

solved by the model; realistically, these should form a curve. In this case, it is evident that the 

flow is never perfectly expanded as it is initially over-expanded, with an increasing pressure 

ratio as the pulse dissipates. The cross-section diameter at the shock can be read off the x-axis. 

At 2.6 seconds (green trace) the normal shock is located at the 1.13 mm cross-section, 

approximately half way inside the nozzle. The oblique shocks (red and purple trace) are a 

schematic representation of the flow because of one-dimensional flow assumptions. 

 

The Mach numbers at the throat, before the shock, after the shock, at the exit, and downstream 

of the CD nozzle are plotted in Figure 6.16, for the 3 second pulse. The flow downstream of the 

CD nozzle (M1) remains supersonic for 0.9 seconds (29% of the blow-down) with weak oblique 

shocks which may still result in secondary entrainment. After 0.9 seconds, progressively 

stronger oblique shocks occur reducing the downstream Mach number. This is followed by 

normal shock waves inside the CD nozzle from 1.9 seconds, limiting secondary entrainment. 
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Figure 6.15 Operating modes of a CD nozzle (0.9 mm to 1.4 mm) during 3 second blow-

down, indicating transient oblique and normal shocks. [59] 

 

Figure 6.16 Mach number at different locations in the CD nozzle in response to the 

3 second transient blow-down. [59] 

6.5.3 Optimizing ejector geometry 

To maximize secondary entrainment, the velocity of flow out of the motive nozzle into the 

suction chamber must remain supersonic for an appreciable amount of time, thereby reducing 

the period in which non-isentropic shocks occur. Using the operating conditions that were 

modeled in Figure 6.15, the ejector CD nozzle geometry was varied to investigate the effect on 

the downstream Mach number, M1. By reducing the CD nozzle outlet diameter to less than the 
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steady state design condition of 1.5 mm, the flow is expected to initially be below the third 

critical point (under-expanded). This ensures that the design condition is met at some time 

during the blow-down where the nozzle flow is perfectly expanded to the third critical pressure 

ratio. 

 

Figure 6.17 shows the Mach number profiles for different CD nozzle outlet geometries 

subjected to the same blow-down conditions. As the outlet diameter is reduced, the period of 

downstream supersonic flow increases (period where M1 > Mt). For a converging only nozzle, 

free expansion from the nozzle exit to the downstream pressure occurs. The free expansion 

wave may block the flow of secondary fluid altogether which must be avoided. Rather than 

allow the flow to expand freely, the diverging section controls the rate of expansion and directs 

the flow downstream. A total of six exit diameters were investigated for the current flow 

conditions, ranging from 0.9 mm to 1.4 mm. The resulting periods of supersonic and subsonic 

flow are plotted in Figure 6.18.  The best design choice would be that corresponding to Figure 

6.17 (b). An exit diameter of 1.1 mm results in the critical pressure ratio being reached at 1 

second, with supersonic flow lasting up to 1.7 seconds. The remaining 1.2 seconds of blow-

down is subsonic and is associated with losses due to oblique and normal shocks. 

 

The operating modes of the designed nozzle are plotted in Figure 6.19. The results are similar to 

Figure 6.15 except that the smaller exit diameter of 1.1 mm results in a reduced period of non-

isentropic shocks. An animation of the transient operating modes is included in Appendix F. 

The flow is initially under-expanded for 1 second, at which point it passes through the third 

critical design condition. Progressively stronger oblique shocks occur from 1 second to 

2.5 seconds, followed by normal shocks that regress up the nozzle. 

 

Provided that the control scheme is sufficiently adept, the pulse can be directed through a 

bypass loop for the latter portion of the blow-down, avoiding the ejector and the losses 

associated with it. 
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Figure 6.17 Mach number profiles for different ejector nozzle geometries (a) De = 0.9 mm, 

(b) De = 1.1 mm, and (c) De = 1.3 mm. [59] 

 

Figure 6.18 Periods of supersonic and subsonic flow for different CD nozzle exit diameters, 

and constant throat diameter of 0.9 mm. 
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Figure 6.19 Operating modes of a CD nozzle (0.9 mm to 1.1 mm) during 3.1 second blow-

down, indicating transient oblique and normal shocks. 

6.6 PRS components  

The PRS was assembled from the components used in the PTL. Additional components include 

an ejector, expansion valve, evaporator tube, check valve, additional pressure transducers, 

thermocouples and an additional 3-way servo valve. The small volume of the tube has a 

negligible affect the refrigerant charge mass. Individual control of both 3-way valves is 

provided on the graphical user interface (GUI) of the custom NI LabVIEW control application, 

described in Chapter 5. 

6.6.1 Expansion valve 

The expansion valve provides a pressure drop of up to 6.8 bar across it, expanding the fluid into 

the evaporator. The evaporator is a simple 1/8” stainless steel tube that connects the LRL to the 

secondary inlet of the ejector, Figure 6.20. A small expansion valve was selected having 1/8” 

tube ports and a vernier scale. 
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Figure 6.20 Expansion valve and evaporator tube in the ejector cooling loop. 

6.6.2 The ejector  

A custom ejector was designed (Figures C.9 and C.10, Appendix C) but not employed in the 

PRS. Three commercial ejectors were available with nozzle throat diameters of 2.4 mm, 1.5 mm 

and 0.8 mm. The smallest ejector with a 0.8 mm throat diameter was installed in the PRS, 

Figure 6.21. This ejector is similar to the design requirement of having a 0.9 mm throat. During 

operation, valves are toggled such that refrigerant is pulsed through the ejector to entrain and 

compress refrigerant from the cooling loop evaporator.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.21 Ejector installed with pressure transducers and thermocouples 
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6.7 PRS variants 

i) Variant I 

 

The PRS was configured such that two variants could be tested. Variant I (shown schematically 

in Figure 2.18) is photographed in Figure 6.22. It enables operation of the PTL when the ejector 

cooling loop is bypassed. Two valves at the outlet of the boilers are actuated to pulse refrigerant 

either through the VTL bypass or through the ejector cooling loop. Ideally, the automated 

control scheme operates the second valve such that the ejector functions for the first portion of 

the pulse exploiting the high pressure ratio across it. When the boiler pressure falls below a 

predetermined value, the valves toggle such that the flow bypasses the ejector. This avoids the 

non-isentropic losses associated with the shocks that occur in an ejector at low ∆P. This method 

of operation requires a low pulse frequency (f) to enable time for the servo-valves to actuate. 

The servos that actuate the valves are rated at 0.17 s/60° therefore they require at least 0.26 s to 

travel 90°. Considering the torque required for actuating the valves, the servo’s speed is further 

decreased. Closer examination of the PTL performance map reveals that a PTL operating near 

the right pulse limit would provide increased ∆P at low f. 

 

 

 

Figure 6.22  PRS variant I integrates a VTL bypass which enables normal PTL operation. 

Valve 2 is actuated to direct pulses of refrigerant through the ejector cooling loop during PRS 

operation. 
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ii) Variant II 

 

Variant II (shown schematically in Figure 6.23) photographed in Figure 6.24 is simpler in 

design and does not include a VTL bypass. The second 3-way valve is located in the LRL to 

direct refrigerant either to the boilers or to the evaporator. Ideally, the evaporator section is 

closed off during pulsing to maximize the flow to the boilers. This allows for the maximum 

amount of refrigerant to be circulated back to the boilers, maintaining steady operation. The 

valve is actuated in-between pulses to replenish the liquid refrigerant upstream of the expansion 

valve. The ensuing pulse is intended to entrain refrigerant out of the evaporator lowering the 

temperature and pressure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.23 Schematic of PRS variant II. The second 3-way valve is located in the LRL. 
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Figure 6.24 PRS variant II includes a 3-way valve in the LRL and no VTL bypass loop.  

6.8 PRS experimental results 

A number of experiments were carried out in an effort to validate the PRS concept. This 

included different system configurations (variants I and II), valve operation, heat input and 

∆Pset. Although no cooling effect was achieved, promising results were obtained. Automated 

operation of the second 3-way servo valve could not be carried out (in both variants) due to the 

unpredictable pulsing of the boilers. The second valve, whether installed in the VTL for variant 

I or the LRL for variant II, was configured manually depending on PTL or PRS operation. 

6.8.1 Unsteady PRS operation 

Figure 6.25 shows the pressure history for an experiment where variant I operated in PTL mode 

with a steady state ∆Pset of 7.5 bar, until 2335 s. The system was charged with x = 67% vapor, 

heat was supplied at 300 W and the condenser was set to 15°C. At 2335 s the valves were 

configured such that the pulses were directed through the ejector cooling loop. The absolute 

pressure measured at the ejector inlets (PJ1, PJ2, PJ3) was initially 5.5 bar. At the start of the 

pulse PJ1 increases to 10.6 bar. This is 2.4 bar less than P2, and is due to the expansion process 

lowering the pressure. Ideally, the ejector should be placed as close to the boiler exit as possible 

to exploit the high ∆P, and improve the ejector back pressure ratio (φ). This also reduces the 
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chance of two-phase flow developing in the ejector. Within three pulses the system stalled 

because the boilers were unable to pump sufficient refrigerant through the condenser to the 

alternate boiler.  

 

In Figure 6.26 variant I is close to stalling at 2700 s, operating with a reduced ∆Pset and 

increasing TB. The operation was switched over to PTL mode where the pulses were diverted 

through the VTL at 4220 s. The temperatures and pressures quickly stabilized. This highlights 

the robust operation of the PTL where the ∆Pset was raised from 0.6 bar to 8 bar and TB reduced 

by 13°C within 50 s. 

 

An attempt to start the variant II is shown in Figure 6.27. The system was charged with x = 68% 

vapor, which was insufficient. The pressure trend mimicked that of the trend seen in Figure 5.7, 

displaying both pressure and condenser limited operation. This indicates a low charge mass, or 

large vapor fraction. A PRS clearly requires more refrigerant in the loop in comparison to a 

PTL. Increased charge mass reduces the head loss associated with the vapor section, but can 

result in increased system pressure. 

 

 

Figure 6.25 PRS variant I where operation is switched from PTL to PRS mode. Q = 300 W, 

x = 0.67, TW1 = 15°C. The system stalls within 3 pulses. The trend indicates a low charge mass. 

The initial pulse with ∆Pset = 7.5 bar provides compression (PJ3-PJ2) to the secondary inlet of 

0.4 bar.  
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Figure 6.26 PRS variant I, operating with unsteady pulses and decreasing ∆Pset, increasing 

in temperature and about to stall. Pulses are diverted through the VTL bypass at 4220 s to 

reduce boiler block temperature. This highlights the importance of having a bypass loop in the 

PRS. 

Figure 6.27 PRS variant II operation with x = 0.68. The system is both condenser and 

pressure limited, indicating a low charge mass. The initial pulse with ∆Pset = 11.5 bar results in 

1 bar compression (PJ3-PJ2) of the secondary stream. 

6.8.2 Steady PRS operation 

Due to the increased capacity of the current boiler design, and the simpler construction of 

variant II, the system was able to circulate refrigerant without stalling. This was the first 

demonstration of a PRS that was able to sustain steady pulsing, although the refrigeration effect 

could not be achieved. 

 

The PRS was frequently characterized by steady but asymmetric pulsing. The system was 

unable to provide cooling and could be described as a PTL with a flow constrictor. Figure 6.28 
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presents the maximum steady-state compression that was achieved for variant II. A ∆Pset of 

11 bar resulted in a maximum compression of 0.73 bar. Compression increases with an increase 

in ∆Pset, which is also evident in Figure 6.29. The average ∆P is 4.2 bar and the slightly stronger 

pulses result in improved compression. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.28 Steady (asymmetric) operation of variant II results in asymmetric compression 

of the secondary inlet to the ejector. ∆Pset = 9 bar to 11 bar, x = 55%, TW1 = 15°C 
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Figure 6.29 Low ∆P pulsing through ejector of variant II results in uneven compression. 

∆Pset = 4.2 bar, x = 55%, TW1 = 15°C 

Extended duration experiments lasted up to 6 hours, but symmetric pulsing was difficult to 

achieve. The limited data obtained in testing at steady-state conditions enabled the generation of 

the performance curves shown in Figures 6.30 and 6.31. The ∆Pset vs. f map in Figure 6.30 

resembles that of a conventional PTL where ∆Pset is inversely proportional to f. The 

performance curve generated for test 1 (Variant I with integrated PTL and PRS) is noticeably 

different to the two curves generated for test 2 (variant II – simple PRS). Variant II has 

substantially less fittings in the VTL, which enables improved circulation of refrigerant with 

increased f. Two PTL curves are superimposed to aid in the comparison. Variant II generates 

similar performance curves to a PTL at approximately half the operating power. The PRS 

requires more refrigerant (or reduced x). 

 

Figure 6.31 provides the compression curves for the experiments. An increased ∆Pset provides 

increased compression of the fluid at the secondary inlet to the ejector. Variant II was unable to 

maintain steady states at ∆Pset above 6 bar. 

 

Although the PRS did not function in refrigeration mode, the reaction of the ejector to the flow 

pulses as shown in Figure 6.28 and 6.29 is encouraging, and suggests that the PRS concept may 

well function as expected with additional modifications. 
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Figure 6.30 ∆Pset vs. Frequency for three PRS tests. Two PTL curves are superimposed for 

comparison. The inversely proportional relationship is characteristic of a PTL pumped system. 

Figure 6.31 ∆Pset vs. Compression achieved by the ejector. Compression increases with 

∆Pset. 

6.9 Summary 

Two variants of the prototype ejector-based PRS were tested. The PRS was assembled using the 

PTL boilers, condenser and the components required in the ejector cooling loop.  

 

The ejector in the cooling part of the cycle was driven by the PTL boilers and was therefore 

exposed to transient pulses of refrigerant. The design of an appropriate ejector was investigated 
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through the development of two analytical ejector models. The design code was used to 

prescribe an appropriate ejector geometry for steady-state flow conditions. The geometry was 

then investigated using the transient performance analysis model.  

 

For both PRS variants investigated, the highest compression achieved was 0.73 bar (this was 

from a ∆Pset of 11 bar) and the system was unable to achieve refrigeration. Although the 

integration of an ejector with a PTL was demonstrated, the rapid decrease in ∆P and the poor 

circulation rate through the cooling loop resulted in little to no entrainment (ω) at the ejector. 

The transient model of the ejector indicated that performance would improve with the 

incorporation of a custom made ejector that has a smaller nozzle exit diameter. The smaller exit 

diameter would result in the flow initially being under-expanded, and therefore pass through the 

third critical point of operation, to achieve a maximum entrainment of 0.2, for a finite period.  

 

It is probable that the ejector pressure ratio (φ) increases to unity much faster than what is 

predicted by the transient model. The transient model does not take into account the increasing 

back pressure at the condenser, in response to Boyle’s Law. A modification to the code is 

required to enable improved performance prediction. 

 

A scaled up PRS using a similar sized ejector would result in a longer transient blow down with 

a more appreciable portion of entrainment. This may offer the best approach for successfully 

transforming the PTL into a pump-free refrigeration device. 
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7 CONCLUSION 

Two thermal management systems were investigated for terrestrial and space applications. The 

pulse thermal loop (PTL) is a lightweight, semi-passive cooling system. During operation, it 

provides approximately isothermal two-phase cooling of heat-generating equipment, without a 

circulation pump. High heat transfer capability and long transport distances make the PTL more 

attractive than passive heat pipes (CPLs and LHPs). In comparison to pumped cycles, the PTL 

is able to provide power-free operation with similar driving pressures. 

 

The PTL tested in this study included two thermally coupled boilers incorporating pressure 

transducers and thermocouples. The boilers were at least two times larger than previous 

versions and featured 115 mm long sight glass windows. The loop made use of modular 

components that enabled rapid system reconfiguration. A concentric tube heat exchanger was 

designed and constructed from extruded transparent acrylic tubes. A custom servo-controlled 3-

way ball valve was designed and implemented in the control scheme. 

 

A PTL performance map was generated and compared with the literature. Ideal and non-ideal 

start-up conditions were investigated (including under and over-charge mass) as well as 

operation at low ∆Pset. A smaller pressure differential and an increased pulse frequency results 

in improved heat transfer at the boilers. Feedback control theory can be implemented in 

software to ensure a greater level of control, reduce asymmetrical behavior, and improve 

reliability. The PTL responds well to ∆Pset ranging from 3 bar to 12 bar and varied heater inputs 

ranging from 100 W to 800 W. The corresponding local heat flux density (in terms of wetted 

area) ranged from 7.2 W/cm
2
 to 28.9 W/cm

2
. Boiler vapor temperature fluctuations were 

typically ±4°C. Increased pulse frequencies result in less vapor temperature fluctuation at the 

boilers. The PTL can operate at ∆Pset below 3 bar, but this is typically associated with a high 

pulse frequency (f). The servo valves used in this study were limited to a maximum of 0.5 Hz.  

System failure occurred on three occasions due to the 3-way servo valves malfunctioning, 

therefore reliability must be addressed. Solenoid valves would be better suited to increased 

pulse frequencies at lower ∆Pset. The results indicate that a temperature sensitive device 

generating variable heat loads can be maintained at an approximately isothermal (constant) 

temperature by keeping ∆Pset constant. The pulse frequency self adjusts to the required heat 

transfer. 

 

The PTL was transformed into a PRS where the boilers and condenser operated as a heat pump. 

It was intended to provide power-fee cooling without a pump or compressor in the loop. This 

was not demonstrated. The high driving pressures developed at the boilers were supplied to the 
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ejector with the aim of entraining and compressing a secondary stream.  The PRS essentially 

functioned as a PTL with a flow restrictor in the VTL, providing isothermal cooling of the 

boiler block. Operation of the PRS was, however, more erratic and asymmetrical than the PTL. 

 

The PRS performance was dependent on the functioning of the ejector. A design code was 

developed which determined the required ejector geometry for operation under steady state 

conditions. A quasi-steady two-phase performance code was also developed to analyze the 

dynamic behavior of the ejector performance in response to a transient pressure wave from the 

boilers. This was the first such predictive tool of its kind. 

 

A smaller nozzle diverging exit diameter results in a longer period of supersonic downstream 

flow and fewer shock waves. Designed correctly, an ejector that operates in a transient system 

can provide entrainment for a finite period. A commercial ejector was selected for incorporation 

in the design of the pulse refrigeration system, and although the prototype was unable to provide 

cooling, the ejector did provide some compression to the secondary stream. 

 

The PTL and the PRS are similar systems and experimental data demonstrates that the PTL 

offers potential for use in future spacecraft thermal control: it is robust, provides high heat 

transfer rates at high heat flux density, performs under a range of operating conditions, can be 

made passive using diaphragm valves, is flexible in design, and provides reduction in radiator 

weight due to the two-phase heat transfer. The ejector-based pulse refrigeration system (PRS) 

does not require a circulation pump and would be suitable for terrestrial and space (gravity-free) 

applications. Further analysis of the transient PRS is necessary in order to effect successful 

operation.   

 

Numerous factors have been identified which should be investigated to improve the 

performance of the PTL, and to demonstrate the PRS. An improved boiler design could enhance 

the liquid contact area which would provide increased heat transfer at higher heat flux densities. 

This would improve the limits of the operating window in Figure 5.15. A power-free diaphragm 

valve should be investigated for use in the PTL to demonstrate absolute semi-passive operation. 

Such a valve must be validated for high ∆P operation. PTL configurations with more than two 

boilers should also be investigated. 

 

The control algorithm can be improved on by adding ∆P feed-back control. This will enhance 

steady operation by avoiding asymmetrical pressure trends. The application would monitor the 

maximum and minimum pressures achieved at each boiler to determine which is pressure or 
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condenser limited (during pressurization). The condenser limited boiler is typically cooler and 

can be intermittently pulsed at a higher ∆Pset to force more mass into the pulse limited boiler, 

which will reduce its temperature and pressure. 

 

Alternative working fluids with significantly different latent heat of vaporization can be 

investigated. A dry refrigerant should improve the performance of the ejector in the proposed 

PRS. A small heater could also be added upstream of the ejector to investigate superheating the 

flow before expansion, thereby avoiding two-phase flow. A large condenser, which pressurizes 

less during blow-down through the ejector, should be investigated for the PRS. This will 

improve the ejector pressure ratio, φ. The design of a larger boiler would also improve the blow-

down period through the ejector. 

 

The ejector transient model can be improved on by including the pressurization of the condenser 

due to Boyle’s Law. This would provide improved performance prediction of the transient 

blow-down. Also, one-dimensional empirical correlations of the oblique shocks (Fanno and 

Rayleigh lines) should be investigated and included in the transient model.  
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Table A.1 Comparison of various thermal management technologies for space applications 

 High driving 

pressure 

Gravity 

independence 

High heat 

flux 

Multiple 

evaporators 

Zero power 

consumption 

Active 

cooling 

Comments 

Heat pipe       Limited transport length, low pressure pumping, 

limited heat flux 

LHP/CPL       Limited transport length, low pressure pumping 

and, limited heat flux 

Single-phase 

pumped loop 

      Long transport distances, high pressure pumping, 

high heat flux and convective cooling, can operate 

in adverse gravity environments, and requires 

electrical power for pump 

Two-phase 

pumped loop 

or ECS 

      Long transport distances, high pressure pumping, 

high heat flux and evaporative cooling, normally 

gravity dependant, cools to below condenser 

temperature, and requires electrical power for 

pump 

PTL       Long transport distances, high pressure pumping, 

moderate heat flux and evaporative cooling, can 

operate in adverse gravity environments and 

competes with pumped cycles requiring no pump 

PRS       Long transport distances, high pressure pumping, 

high heat flux and evaporative cooling, can 

operate in adverse gravity environments, cools to 

below condenser temperature, and competes with 

pumped cycles requiring no pump 

 

  * white – no relationship, light grey – light relationship, light blue – moderate relationship and dark blue – strong relationship 
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Table A.2 Comparison of different PTL designs 

 

Weislogel 1998 [3] 

1of 4 

Weislogel 1998 [3]   

2 of 4 

Weislogel et al. 2004 

[2,16] 

Brooks et al. 2007 [4] Brooks et al. 2008 [5] Current PTL 

Working fluid R-134a R-134a R-134a, R-10a, 

ammonia 

R-134a R-134a R-134a 

Volumes (cm
3
) Boiler: 98 

 
(x2), 

Condenser: 60, 

VTL+LRL: 64, 

Total: 320 cm
3
 

Boiler: 90
 
(x2), 

Condenser: 34, 

VTL+LRL: 69, 

Total: 283 cm
3
 

Boiler: 44.8 (x2), 

Condenser: 27.8, 

VTL: 19.7, LRL: 

14.9, Total: 152 cm
3
 

Boiler: 31.5 (x2), 

Condenser: 39.2, VTL: 

27.7, LRL: 21, Total: 

159.9 cm
3
 

Boiler: 36 (x2), 

Condenser: 40.7, VTL: 

26, LRL: 24.4, Total: 

163.1 cm
3
 

Boiler: 81.2 (x2), 

Condenser: 42.8, 

VTL: 31, LRL: 23.4, 

Total: 265.2 cm
3
 

Charge level 

vapor quality 

Vvapor/Vtotal: 0.6 to 

0.746 @ 20°C 

Vvapor/Vtotal: 0.6 to 

0.746 @ 20°C 

Vvapor/Vtotal: 0.594-

0.807 @ 20°C 

Refrigerant mass of 80 

to 120 g
 

Refrigerant mass of 80 

to 120 g 

Vvapor/Vtotal: 0.632 – 

0.687 @ 20°C 

Transport tubing 

(condenser  + 

VTL + LRL) 

4.82 mm ID, 6.98 m 

long 

4.82 mm ID, 5.82 m 

long 

4.82 mm ID, 3.3 m 

long 

4.55 mm ID, 2.4 m + 

1.7 m + 1.29 m = 

5.4 m 

4.55 mm ID, 2.5 m + 

1.6 m + 1.5 m = 5.6 m 

4.55 mm ID, 5.98 m 

long 

(Vtubes)/Vboiler 2.27 1.14 1.4 2.44 2.53 1.16 

Boiler type Two thermally 

uncoupled 7/8” ID x 

254 mm long copper 

cylinders. 5 x 750 W 

band heaters per 

boiler 

Two thermally 

coupled 3/4” ID x 

318 mm long copper 

cylinders. 5 x 750 W 

band heaters for both 

boilers 

Two thermally 

coupled 12.7 mm ID 

x 305 mm long 

copper block, heated 

by a single cartridge 

heater. 

Two thermally 

uncoupled 15 mm ID, 

2 x 500 W cartridge 

heaters 

Two thermally coupled 

14 mm ID x 236 long, 

2 x 500 W cartridge 

heaters 

Two thermally 

coupled 22 mm ID x 

200 mm long copper 

cylinders. Sight 

glass. 2 x 500 W 

cartridge heaters 

Condenser type Counter-flow 

concentric tube, 

water at 15 °C 

Counter-flow 

concentric tube, 

water at 15 °C 

Serpentine, counter-

flow, water cooled at 

20 °C 

Counter-flow, water 

cooled at 20 °C, 

0.16625 kg/s 

Counter-flow, water 

cooled at 20 °C, 

0.16625 kg/s 

Counter-flow 

concentric tube, 

glycol-water at 15 °C 

and 20 °C, 0.1 kg/s 

Q range (W) 400 to 2100 400 to 900 25 to 1200 400 to 800 80 to 150 100 to 800 

ΔP range (bar) 1 to 12.4 1 to 8.2 0.5 to 16.5 4 to 8 3 to 8 0.5 to 12 

Instrumentation Type-K 

thermocouples, 

validyne pressure 

transducers, 3-way 

solenoid valves 

Type-K 

thermocouples, 

validyne pressure 

transducers, 3-way 

solenoid valves 

Type-K 

thermocouples, 

validyne pressure 

transducers, 3-way 

solenoid valves 

Type-K 

thermocouples, Wika 

S-10 and A-10 

pressure transducers, 

2-way solenoid valves 

Type-K 

thermocouples, Wika 

S-10 and A-10 

pressure transducers, 

2-way solenoid valves 

Type-K 

thermocouples, Wika 

S-10 and A-10 

pressure transducers, 

2-way servo valves 
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Table A.3 Pair-wise comparison of the project requirements giving relative importance 

Design requirements 
1 2 3 4 5 6 7 8 9 10 11 12 Totals 

Ranking 

(%) 

1 High heat transfer  0 0 0 0 1 0 1 0 1 0 1 4 5.4 

2 High ∆P 1  1 0 1 1 0 1 0 1 0 1 7 9.5 

3 Prevent asymmetry 1 0  0 1 1 1 1 0 1 0 1 7 9.5 

4 No leaks 1 1 1  1 1 1 1 0 1 0 1 9 12.2 

5 Material compatibility 1 0 0 0  1 0 1 0 0 0 1 4 5.4 

6 Modular components 0 0 0 0 0  0 0 0 1 0 1 4 5.4 

7 Maintain volume ratios 1 1 0 0 1 1  1 0 0 0 1 7 9.5 

8 Sight glass 0 0 0 0 0 1 0  0 1 0 1 4 5.4 

9 Instrumentation 1 1 1 1 1 1 1 1  1 1 1 11 14.8 

10 Custom software 1 0 0 0 1 0 1 0 0  0 1 4 5.4 

11 Data logging 1 1 1 1 1 1 1 1 0 1  1 11 14.8 

12 Gravity free operation 0 0 0 0 0 0 0 0 0 0 0  2 2.7 

TOTALS 74 100 
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Table A.4 Quality Function Development technique for ranking engineering requirements 
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High heat transfer 3 9 9 9 3  1 1  9  9 5.4 

High ∆P 9 3 9 9 9  9 1 3 9 3 9 9.5 

Prevent 

asymmetry 
3 9 9 3 1  1 3 3    9.5 

No leaks      9    9 9  12.2 

Material 

compatibility 
9 9   1 3    9 3  5.4 

Modular 

components 
3    3 9 3 1  1 9  5.4 

Maintain PTL 

volume ratios 
     3    1  1 9.5 

Sight glass 3     9    1   5.4 

Instrumentation 9 3 9 3 9  9 9 9 3  9 14.8 

Custom software 9  9 3 3  3  9   3 5.4 

Data logging 1  1 1 1  3 9 9   3 14.8 

Gravity free 

operation 
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Rank 2 9 1 11 8 10 6 7 3 4 12 5 

Relationship score: 

9 - Strong relationship 

3 - Moderate relationship 

1 - Weak relationship 

The scoring takes into account the weighted 

importance of the project requirements, from 

Table A.3. 

Functional 

requirements 

Design 

requirements 
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Table A.5 Refrigerant comparison [22,83] 

 R-134a R-123 R-141b R142b R12 R-152a Ammonia 

(R-717) 

Water 

(R-718b) 

Composition HFC HCFC HCFC HCFC CFC HFC NH3 H2O 

Wet/Dry wet dry dry wet wet wet wet wet 

Boiling point at 

1bar (ᵒC) 

-26.36 27.46 31.69 -9.43 -30.06 -24.32 -33.60 99.60 

Pressure at 100 

ᵒC (bar) 

39.72 7.86 6.77 20.84 33.40 35.05 6.26 1.01 

Molecular mass 

(g/mol) 

102.03 152.93 116.95 100.5 120.91 66.05 17.03 18.02 

Latent heat at 

boiling (kJ/kg) 

217.16 

(at -26.36°C) 

170.34 

(at 27.46°C) 

223.08 

(at -31.69°C) 

222.27 

(at -9.43°C) 

166.20 

(at -30°C) 

330.18 

(at -24.32°C) 

1370.30 

(at -33.6°C) 

2256.40 

(at 100°C) 

GWP, ODP 0.26, 0.02 0.02, 0.016 0.15, 0.15 0.36, 0.06 3.00, 0.90 2.80, 0 0, 0 0, 0 

Compatibility 

(materials) 

Reacts with FKM, 

Viton, Kelrez, 

Fluorel, Kel-F 

- Reacts with FKM, 

Viton, Buthyl 

May react with 

aluminum 

Reacts with FKM, 

Viton, Buthyl, 

PTFE, PCTFE, 

silicon, EPDM 

Reacts with 

FKM, Viton, 

Buthyl, PCTFE 

Toxic, 

corrosive 

(Brass, 

Copper) 

- 
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Two-phase 

(a) (b) 

Figure A.1 Temperature vs. Entropy schematics for (a) a wet vapor refrigerant, and (b) a dry vapor refrigerant. A wet vapor refrigerant has a negative 

slope saturated vapor line. As it undergoes isentropic expansion, it passes through the two-phase region and condensed bubbles form in the vapor flow. The 

vapor may be superheated to avoid this. A dry vapor refrigerant has a positive slope saturated vapor line. It remains a superheated vapor during expansion. 



 
 

130 

 

Table A.6 Specifications of candidate materials for boiler block  

 
Al 6082 (T6) 

[85] 
Cu [23] SS 316 [86] Brass [23] 

Melt point, K 585°C 1358 1400 900 

Density (ρ), kg/m
3
 2700 8930 7978 8470 

Specific heat (Cp), J/kg.K 896 385 500 369 

Thermal conductivity (k), 

W/m.K 
180.0 401.0 16.3 116.0 

Youngs Modulus, GPa 70 117.5 193 109.6 

Thermal expansion, K
-1

 23.4x10
-6

    

Poisson’s ratio 0.33 0.345  0.331 

Yield or Proof Stress, MPa 250 330 250 103.4 

Tensile strength (UTS), MPa 290 380 565 275 

 

Table A.7 3-Way valve specifications [54,55] 

 SS-43GXES4 

Tube fitting size, inch 1/4 

Packing UHMWPE 

O-rings Ethylene Propylene 

Starting torque required, N.m 2.6 

Reactivity with R-134a No 

Flow coefficient (Cv) for ∆P = 6.8 bar 0.9 

 

Table A.8 Servo specifications (HS-7980 TH Monster Torque) [56] 

 At 6.0 Volt At 7.4 Volt 

Operating speed at no load, s/60° 0.21 0.17 

Stall torque, N.m 3.53 4.31 

Motor type Coreless carbon brush 

Temperature range, °C -20 to 60  

Gear material Titanium 

Dimensions, mm 43.8 x 22.4 x 40 

Weight, g 78.2 
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y = 4.4438x-0.43 
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Power (Nu Laminar) 

Table A.9 Tabulated Nusselt numbers for laminar flow in an annulus [47] 

ODt/IDa 0.05 0.1 0.25 0.5 1 

Nu 17.46 11.56 7.37 5.74 4.76 

 

 

 

 

 

 

 

 

 

 

Figure A.2 Nusselt number for laminar flow tabulated values curve fit approximation, 

gives Equation 3.16. 
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Table A.10 Comparison of ejector geometries from the literature 

Literature Code Dt 

(mm) 

De 

(mm) 

Ae/At Nozzle 

converging 

angle 

Nozzle 

diverging 

angle 

NXP 

(mm) 

Chamber 

Inlet 

Angle 

Dm 

(mm) 

Am/At Lm/Dm NXP/Dm 

 

Chamber 

diffusing 

angle 

Huang et al. [63] AA 2.64 4.50 2.91    22° 6.70 6.441  1.50 9.41° 

 AB       30° 6.98 6.99    

 AC       23° 7.60 8.29    

 AD       22° 8.10 9.41    

 AG       30° 7.34 7.73    

 EG 2.82 5.10 3.27    30° 7.34 6.77    

 EC       23° 7.60 7.26    

 ED       22° 8.10 8.25    

 EE       23° 8.54 9.17    

 EF       23° 8.84 9.83    

 EH       28° 9.20 10.64    

Selvaraju and Mani [72]  0.50 0.80 2.56  10°  34° 1.40 7.84 10 - 12  6.4° 

  0.80 1.30 2.641     1.90 5.64 8 - 10  6.3° 

  1.00 1.60 2.56     2, 2.9 4.00, 8.41 10 - 12  6.3°, 6.4° 

Cizungu et al. [31]    3.06 20° 4° 12 to 24   4, 5.76, 7.84 10.00  3° 

Rusly et al. [68]  2.64 4.50 2.89  3.5°  5° 7.12 7.27 5.00 1.50 3.5° 

Sankarlal and Mani [73]  0.50 0.80 2.56    34.5° 1.40 7.84 8.21   

  0.80 1.30 2.64    34.5° 1.90 5.67 8.52   

  1.00 1.70 2.89    34.5° 2.00 4.00 8.60   

Yapici and Ersoy [76]  2.85 5.60 3.86  5°   9.00   0.5 – 2.0 5° 

Meyer et al. [27]  2.50 8.00 10.24  10° 5  18.00 51.80    

  3.00 12.00 16.00     18.00 36.00    

  3.50 14.00 16.00     18.00 26.40    

Dt – Nozzle throat diameter,  De – Nozzle exit diameter,  Dm – Mixing chamber diameter,  

Angles measured from the horizontal plane, NXP – Distance from nozzle exit to constant area mixing chamber 
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Table A.11 Control hardware specifications 

 

 Pressure transducer Thermocouple Servo Heater 

Model Wika-S10 Wika-A10 Type-K Hitec HS 9800 - 

Quantity 2 4 12 2 2 

Connection BSP thread BSP thread 1/8” 

compression 

- - 

Input 10 V to 30 V 

DC 

10 V to 30 V 

DC 

- 7.4 V DC 

(limited to 7 

Amp) 

230 V AC 

Output 4 mA to 20 

mA 

4 mA to 20 

mA 

0 mV to 50 

mV 

4.1 N.m - 

Range 0 bar to 25 bar -1 to 24 bar 0°C to 1260°C -180° to +180° 0 W to 500 W 
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B.  CALCULATIONS 

B.1.  Boiler design 

B.1.1. Minimum wall thickness 

 

     
     

    … Hoop stress (or circumferential shear stress) [47]   (3.1) 

 Where P is the maximum operating pressure (25 bar), r is the internal radius (11 mm) 

 and σy is the yield strength of aluminum 6082-T6 (250 MPa). 

 

      
                

       
  

             

 

Comment: The minimum thickness used in the design of the boilers was 2 mm (Figure C3). 

Therefore, the resulting SF is greater than 10. 

 

B.1.2. Borosilicate gauge glass safety factor 

 

   
           

  
   (Imperial units) [49]     (3.2) 

 Where, 

            [50],         [48],                      , and 

 A is the unsupported area calculated from the dimensions given in Figure C.3. 
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B.1.3. Sight glass bolt tightening torque and safety factor 

 

Soft clamped members with rigid bolt theory (Figure B.1) is used to calculate 

a) the tightening force, Fi 

b) the tightening torque, Ti and, 

c) The Safety Factor, SF 

 

 

 

 

 

 

 

 

Figure B.1 (a) Soft clamped members with a rigid bolt, and (b) bolt force diagram used to 

calculate initial tightening force (Fi). [51] 

 

a) Tightening force 

 

                 [51]       (3.3) 

 

 Where, 

 An M4 bolt is investigated having a yield/proof stress of            [51] and cross 

 section area of                [51] 

 

                  

 

             

 

b) Tightening torque 

 

                 [51]       (3.4) 

                  

               

 

 

External force, 

Fe Rigid bolt 

Soft clamped 

member 
Fb = Fi 

Fb = Fi + Fe 

External Force, Fe 

B
o

lt
 f

o
rc

e,
 F

b
 

Fi 

(a) (b) 



136 

 

c) Safety Factor 

 

The safety factor is calculated for the maximum load per bolt (8 bolts per sight glass) 

 

   
  

                 (3.5) 

 

 Where, 

    
        

 
  

 The chamber has a maximum internal pressure of             and, 

 unsupported area of              

                
    

             

 

 And, 

       
  

     
  

       
      

      

                 

 

       
       

 

        

 

B.1.4. Total boiler volume 

 

The total boiler volume includes the chamber, sight glass cavity, and the tube volumes at the 

inlet and exit to the boiler up to the valves. The cut-away boiler cross-section including the sight 

glass cavity and relative dimensions is shown in Figure B.2. The cavity length is 200 mm and 

the tube lengths at the inlet and exit to the boilers are 90 mm and 180 mm, respectively. 
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Where: 

D = 22 mm 

b = 11 mm 

h = 11 mm 

w = 2 mm 

l = 98 mm 

 

 

 

 

 

 

 

 

Figure B.2 Cut-away cross-section of boiler chamber showing sight glass cavity detail. 

 

                                

 

        Where, 

                         
 

 
 
 

 
               

                         
 

 
 
 

 
          

                         

 

         
         

 

 
                    

       
 

 
          

              
                     

            

                             

 

                              

 

B.1.5. Transport tube safety factor by Hoop Stress method 

 

     
     

    … Hoop stress (or circumferential shear stress) [47]   (3.1) 

Where P is the maximum operating pressure (25 bar), r is the internal radius (2.28 mm) and σy is 

the yield strength of 316 stainless steel (250 MPa). 

      
                  

       
  

                  

 

Comment: The 1/4” tube wall thickness is 0.9 mm. This results in a large SF greater than 10000. 

D = 2b 

w h = D/2 
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B.2.  System head loss 

The system head loss is calculated for the vapor and liquid portions separately in part (a) and 

part (b). 

 

Assumptions: 

 The system is charged with enough refrigerant such that half the condenser and the LRL 

contain saturated liquid refrigerant. The other half of the condenser and the VTL 

contain saturated vapor. 

 An average flow rate of 5 g/s 

 An average system pressure of 16 bar is assumed for saturated liquid and vapor states. 

 

Stainless steel properties: Є = 0.0021 

For a 1/4” tube:                 and           mm
2
 

 

PART A: Calculate losses for vapor portion only 

 

R-134a vapor properties at 16 bar:           μPa.s                  ,  

 

    
              (3.19) 

        
                 
  

           

 

   
   

             (3.20) 

                         
           
  

            

 

From Moody diagram,         [58] 

 

      
 

              (3.22) 

 Where        
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Table B.1 List of fittings and loss coefficients in vapor portion. [6,58] 

Fitting Amount Loss coefficient, K ΣK 

Pipe entrance 1 0.50 0.30 

90° bend 8 0.31 2.48 

Check valve 1 Le/D=100 - 

T-joint in-line flow 1 0.30 0.30 

ΣK 3.08 

 

       
             (3.23) 

               
   

          m 

 

Loss due to the check valve is calculated from: 

      
  

     
     

                    
   

           

 

                     

 

                  (3.24) 

                      

                          

 

PART B: Calculate losses for liquid portion only 

 

R-134a liquid properties at 16 bar:                 and                 

    
              (3.19) 

          
                 
  

           

 

   
   

             (3.20) 
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From Moody diagram,         [58] 

 

      
 

              (3.22) 

 Where        
 

 
                

 

 
             

                     
                
  

            

 

                 (3.24) 

                      

                    

 

Table B.2 List of fittings and loss coefficients in liquid portion. [58,6] 

Fitting Amount Loss coefficient, K ΣK 

Pipe exit 1 0.922 0.50 

90° bend 5 0.31 1.55 

Lift check valve 1 12.00 12.00 

T-joint in-line flow 2 0.30 0.60 

Cross in-line flow 1 0.30 0.30 

Ball valve (open) 1 0.05 0.05 

ΣK 15 

 

       
             (3.23) 

             
   

            

 

                  (3.24) 
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B.3.  System charge mass 

An adequate system charge mass is calculated according to Figure 5.1, assuming that the 

following mass distribution is present before a boiler is pulsed: 

1) Half the condenser and the LRL contain saturated liquid at 8 bar. 

2) The VTL and half the condenser contain saturated vapor at 8 bar. 

3) The pressurizing boiler contains 20% saturated liquid and 80% saturated vapor at 

16 bar. 

 

R-134 properties: At 16 bar                                 

   At 8 bar                                 

 

Vapor mass calculations: 

 

a) Empty boiler at 8 bar 

             

                   

        

 

b) VTL at 8 bar 

          

                 

        

 

c) ½ condenser at 8 bar 

                     

                   

        

 

d) 80% of pressurizing boiler at 16 bar 
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Liquid mass calculations: 

 

a) ½ condenser at 8 bar 

                     

                   

         

 

b) LRL at 8 bar 

          

                   

         

 

c) 20% of pressurizing boiler at 16 bar 

                  

                       

         

 

                        

                

 

Total charge mass required to meet the operating condition: 

 

                   

                

 

System mass fraction: 

 

The total system mass fraction at 20°C can be calculated from, 

 

        
  

             

Where the saturated properties of R-134a at 20°C are:                ,  
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Comment: This falls between the recommended values of 60% to 80%, in Table A.2. 

B.4.  Condenser performance 

An example calculation of the average heat transfer at the condenser is provided here.  

 

For 500 W heat input, a ∆Pset of 10 bar, TW1 of 15°C. 

 

The heat transfer at the condenser is calculated from Equation 3.12 

 

                                 

 

 Where,                           (assumed minimum mass flow rate) 

           J/kg.K (for 30:70 glycol-water at 15°C) 

        
         
     

   
  

         
     

   
 , where Tc,i = TW1 and Tc,o = TW2 (from experimental 

 results) 

               

 

            

 

The average mass flow rate of the refrigerant can be calculated from the heat transfer rate, 

        
 

                     
  

 Where,             J/kg.K for R-134a vapor flow 

        
         
     

   
  

    
     
     

   
 , where Th,i = TH1 and Th,o = TH2 

  

        
      

                

 

                

 

Comment: This result assumes a constant vapor Cp-value to give an approximated mass flow 

rate. The results could be analyzed to consider the condensation taking place at the condenser 
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but would be beyond the scope of this work. 

B.5.  Effectiveness NTU method 

                           

                              

 

                                           

 

                

 

Effectiveness 

 

  
 
    
  

             
    

  

                  
     
    

       

 

Heat transfer rate 

 

                                            

           

 

Note that this should be similar to the heat transfer rate calculated in B.4 

 

Number of Transfer Units 

 

   
    

    
 

    

     
           

 

For     ,   
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C. DRAWINGS 

 

 

 

 

 

 

 

 

 

 

 

Figure C.1 Boiler block design (a) top view and (b) isometric view 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C.2 Cross-sectioned isometric view of the boilers showing the minimum thickness 

where the maximum stress occurs 

 

 

 

 

 

 

 

 

(a) (b) 

Gauge glass 

Heater element 

Boiler chamber 

inlet 

Instrument ports 

tmin = 2 mm 

t = 3.1 mm 

t = 4 mm 
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 Figure C.3 Boiler block machine drawing 
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 Figure C.4 Boiler block glass cover plate machine drawing 
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 Figure C.5 Servo valve bracket 
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Figure C.6 Tube from boiler outlet to the 3-way valve 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



150 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure C.7 Condenser inlet manifold 
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Figure C.8 Condenser return manifold 
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Figure C.9 Ejector body (design) 

 



153 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure C.10 Ejector nozzle (design) 
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D. DATA ACQUISITION SOFTWARE AND HARDWARE 

D.1.  LabVIEW GUI 

 

Figure D.1 LabVIEW GUI. The tabbed control is used to select manual, PTL, or PRS 

operating modes. ∆Pset and Q can be varied on demand. The application .VI is available on the 

included disk. 

 

 

 

 

 

 

 

 

 

 

 

   



155 

 

D.2. DAQ chassis and modules 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure D.2 NI module connections and DAQ chassis  

NI – 9203 (Pressure) NI – 9211 (Temperature) 

NI – 9211 (Temperature) NI – 9211 (Temperature) 

NI – 9474 (Digital output) 

P1 

P2 
PJ1 

PJ2 

PJ3 
Pref 

TB1 

TB2 

T1 

T2 

TJ1 

TJ2 

TJ3 

TC1 

TC2 

TW1 

TW2 

Tref 

Valve 1 

Valve 2 

Heaters 

NI Compact DAQ - 9172 
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D.3.  VI diagrams 

 

 

 

 

 

 

 

Figure D.3 Generate 200 Hz frequency signal for servo 1 with a 30% duty cycle from the 

NI 9474 module counter, and start the task. This is repeated for servo 2. 

 

 

 

 

 

 

 

 

 

Figure D.4 Manual servo control with user defined duty cycle. The sub-VI writes the task 

to the output channel. The logic computes the alternative servo position (±90°) which is used in 

the PTL and PRS automated control logic. This is repeated for servo 2. 

 

 

 

 

 

 

 

 

 

 

Figure D.5 PTL automated valve toggling. Writes the new position to the output task and 

computes the alternative position. The embedded loop only executes when the input is true, (∆P 

> ∆Pset) 

∆P > ∆Pset ? 
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Figure D.6 PRS automated valve toggling for variant I, using a flat sequence structure. 

There are four steps to the sequence when the input condition is true; i) actuate second servo 

valve to ejector loop, ii) a small time delay is imposed, iii) actuate the boiler servo valve to 

pulse refrigerant through the ejector loop, iv) a small time delay is imposed and, v) actuate 

ejector servo valve to allow the latter portion of the pulse to pass through the VTL bypass. The 

same case structure is applied to variant II with steps i and iii swapped. 

 

 

 

 

 

Figure D.7 Tabbed control is manually selected on the front panel to enable manual, PTL 

automated or PRS automated operation. The logic structure is used to determine which 

operating mode is selected. The included switch and wait tabs prevent unwanted valve cycling 

since ∆P may not reduce before the next iteration causing the valve to cycle unnecessarily. 

 

∆P > ∆Pset ? 

∆P > ∆Pset ? 
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Figure D.8 The start task acquires and initializes the signals from the DAQ modules. A 

spreadsheet file is created, opened, and the column labels are assigned. The file is left open to 

improve the loop iteration speed.  

Figure D.9 Measurement loop. The data are unbundled, displayed, and written to a 

spreadsheet file at a frequency of 10 Hz. 
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Figure D.10 Fail-safe logic. The pressure and temperature limits are compared with the real-

time measurements. If the output logic is true, the heaters are turned off. 

 

 

 

 

 

 

 

 

Figure D.11 The stop button terminates the loop. The tasks are cleared and the spreadsheet 

file is closed. 

 

 

Figure D.12 Software generated PWM loop for the heater power control.  

 

 

  

Temperatures 

Pressures 

True or false? 

Fail-safe logic. 

True or false? 
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E. PHOTOGRAPHY 

 

 

 

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Injection 

Boiling & 

pressurizing 

Pulsing 

Figure E.1 Photographs of 

nominal refrigerant injection, 

boiling and pulsing. Flow is from 

right to left. Video of this process 

is given on the disk in Appendix G. 

 
Flow direction 

1. Liquid vaporizes as it is 

injected into the chamber, 

cooling the block. 

 

2. Liquid injection continues 

until the ∆P reduces to close 

the inlet check valve. 

 

3. Pool boiling occurs where 

vapor bubbles form at 

nucleation sites on the 

surface. 

 

4. Pool boiling may approach 

the critical heat flux limit 

where some parts of the 

surface are exposed to vapor.  

 

5. Pressure increases and the 

outlet valve opens at ∆Pset. 

The refrigerant instantly 

vaporizes as it expands into 

the VTL and condenser. The 

high pressure pulse forces 

refrigerant into the alternate 

boiler. 

 
6. The emptied boiler decreases 

in pressure whilst the 

alternate boiler pressurizes. 
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Pulsing 

Injection 

Figure E.2 Photographs of 

refrigerant injection, boiling and 

pulsing with excess mass. Flow is 

from left to right. Video of this 

process is given on the disk in 

Appendix G. 

 

Flow direction 

1. Liquid vaporizes as it is 

injected into the chamber, 

cooling the block. 

 

2. Excess liquid is injected due to 

the high mass content in the 

system. 

 

3. Initially, heat transfer is 

dominated by natural 

convection. The R-134a liquid 

level is visible halfway up the 

sight glass. 

 

4. Pool boiling occurs and small 

bubbles detach from the 

surface. 

 

5. Pressure increases and the 

outlet valve opens at ∆Pset. The 

refrigerant slowly vaporizes as 

it expands into the VTL and 

condenser. Vaporization is 

limited due to liquid occupying 

a greater portion of the loop. 

 

6. The emptied boiler decreases in 

pressure whilst the alternate 

boiler pressurizes. 

 

Boiling & 

pressurizing 
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Figure E.3 Pull down resister of 10 kΩ grounds floating signals present in PWM. 

 

Additional photography is available on the included disk. 


