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U.S. SunShot Program and
Grid Integration Overview
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Discussion

* U.S. SunShot Overview

« Understanding the Value of CSP with Thermal Energy
Storage



U.S. DOE SunShot Initiative — Concentrating Solar Power

* SunShot initiated in 2012

 |dentified technology and cost
objectives to achieve 6¢ LCOE
target:
solar field
receiver
thermal storage/HTF
power block
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CSP Program Technical Targets

RECEIVER SOLAR FIELD
?;grf::;tl E?:‘Zpgzoz/ozooc 1 Optical Error < 3 mrad

Wind Speed = 85 mph
Lifetime > 30 yrs
Cost < $75/m2

Lifetime > 10,000 cyc
Cost £ $150/KWi, |
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TRANSFER FLUID

Thermal Stab. = 800°C

C,23.0/g-K
Melting Pt. < 250°C
POWER BLREY THERMAL STORAGE Cost < $1/kg
Net Cycle Eff. 2 50% - Corrosion < 15 um/yr
et Cycle Eff. 2 50% -
Dry Cooled Power Cycle Inlet Temp 2 720°C

Energy Eff. > 99%
Exergy Eff. > 95%
Cost < $15/kWhy,

Cost < $900/kW,



U.S. DOE SunShot Initiative — Concentrating Solar Power

On the Path to SunShot (2016)

« Update of original CSP SunShot ———
vision Study el Fereminc,

« Significant CSP cost reductions
realized since 2012

« Cost reductions driven
primarily by solar field cost
reductions and learning




U.S. DOE SunShot Initiative — Concentrating Solar Power

CSP Gen3 Roadmap

 |dentifies multiple pathways to

achieve remaining

performance gains and cost

reductions

* Leverages DOE R&D support
for high-temperature
supercritical carbon dioxide
(sCO,) Brayton cycle

Concentrating Solar Power
Gen3 Demonstration Roadmap
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Third Generation CSP: 700 °C+

s-Steam  Air Brayton

sCO, Power Cycles
= Can achieve n > 50%
operating at >700°C

= Scale from 50-500 MW
and can scale to 10 MW
with modest n decrease

= Suitable for dry cooling

Receiver Thermal
Power Cycle

SunShot Target
= 50% Power Cycle
Efficiency

Efficiency

System

600 °C ~— 1200°C

Temperature | >

20 meter Steam Turbine
(300 MWe)

1 meter sCO,
(300 MWe)
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Third Generation CSP: 700 °C+
Leveraging Cross-Cutting STEP Initiative

Nuclear Energy

MNuclear source

sCO,

Team Challenges

STEP Team Objectives
« Launch facilities to test and validate

the technology
2020 Operation

Indirect-fired 10 MWe pilot facility

2026 Operation

Commercial-scale demonstration plant
' ﬁ Demonstrate thermal cycle efficiency of > 50%

 Optimize performance and lower capital costs
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CSP SunShot Pathways

Collector Field

¢ Cost <$75/m2 e Concentratio o Operab|e in . Opt|ca| error . 30_year
n ratio >50 35-mph winds <3.0 mrad lifetime
Receiver « Similarities to prior + Most challenging to achieve * High-pressure fatigue
Cost< $150/kWth demonstrations highthermal efficiency challenges
Thermal Efficiency> 90% . o
Exit Temperature> 720°C . AIIovyance for corrosive attack « Absorptivity control and
10,000 cycle lifetime required thermal loss management
Material & « Potentially chloride or « Suitable materials readily exist » Minimize pressure drop
Support carbonate salt blends; ideal « Corrosion risk retirement
Cost< $1/kg material not determined
Operable range from « Corrosion concerns dominate
250°C to 800°C
Thermal Storage « Director indirect storage may be « Particles likely double as « Indirect storage required
Cost <$75/kWrh superior efficient sensible thermal « Cost includes fluid to storage
99% energetic efficiency storage thermal exchange
95% exergetic efficiency
TF to sC02 e Challenging to simultaneously  Possibly greatest challenge » Not applicable
eat Exchanger handle corrosive attack and « Costand efficiency concerns
high-pressure working fluid dominate

Supercritical C02 Brayton Cycle

e Netthermal-to-electric  + Power-cycle system ¢ Dry-cooled heat e Turbine inlet
efficiency> 50% cost< $900/kWe sink at 40° C temperature 700°C
ambient



CSP SunShot Pathways

e Molten Salt
» Particle
» (Gas-Phase

Recelver System

» Molten salt technology represents most familiar pathway toward Gena3 targets, e.g.
receiver and TES design.

* Intermediate temperature salts (<650C) may provide opportunity for near-term
deployment.

» Development of high-temperature salts and compatible containment materials
represent highest priority R&D challenges.



CSP SunShot Pathways

* Molten Salt
e Particle
» (Gas-Phase
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» Particle-based systems can avoid degradation and corrosion challenges associated
with advanced high-temperature molten salt systems.

« Many BOS components, e.g. particle HXs, storage, and conveyance, have been
developed by industry for alternative applications.

« Primary challenges include efficient heating of particles through direct or indirect
solar illumination , flow control, and containment.



CSP SunShot Pathways

* Molten Salt Covty Recaer

Generator

* Particle o
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« Primary advantages include gas-phase stability over broad temperature range of
operation, low HTF corrosivity, and simplicity of gaseous HTF-to-sCO2 heat exchangers.

» Several gas-phase receiver designs indicate thermal efficiencies >90% are achievable.

« Challenges include inferior heat transfer characteristics and relative immaturity of
compatible TES and integration approaches relative to other pathways.



Discussion

* U.S. SunShot Overview

« Understanding the Value of CSP with Thermal Energy
Storage



Beyond Levelized Cost of Energy

« Competition with PV is often viewed based on LCOE
(or power purchase price)

 The dispatchability of CSP with TES provides value not
captured by a simple LCOE calculation

* There Is a need to educate utilities, regulators, and
researcher organizations on proper methods for
evaluating and maximizing the benefits of CSP



CAISO Duck Curve — Circa 2013

Megowatts
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Quantifying the Benefits of CSP with Thermal Energy
Storage

« Colorado “Test” System
 California/WECC
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Estimating the Value of Utility-
Scale Solar Technologies in

http [/www.nrel. C]OV/DUbI ications California Under a 40%

Renewable Portfolio Standard
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Analysis of Operational and Capacity Benefits of CSP
In Southwest Balancing Area

Reference Map

b

Solar Thermal Plants
in Southwestern USA
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June Price and Dispatch
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January Price and Dispatch
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California ISO Analysis — 33% Renewable
LPortfolio Standard

Relative to PV, CSP provides additional operational Value
to California grid

Marginal Operational Value ($/MWh)
CSP-TES PV
(SM =1.3, 6 hrs TES)
Displaced Fuel 40.2 27.8
Displaced Emissions 10.3 3.1
Reduced Startup & 1.6 -0.6
Shutdown
Reduced Variable 0.4 1.2
O&M
Total 52.7 31.6




CAISO Analysis — Operational Value
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CAISO Analysis — Capacity Value

CSP integrated with thermal energy storage maintains
high capacity value

Capacity Credit (%)

CSP-TES PV
(with > 3 Hrs Storage)
33% RPS Scenario 92.2% 22%
40% RPS Scenario 96.6% 3.4%



CAISO Analysis — Total Valuation

* Relative value of CSP is $48/MWh greater than PV in the
33% scenario and about $63/MWh greater in the 40%

scenario

SM=1.3,6 hrs-

PV -
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Summary

CSP costs have fallen dramatically, driven primarily by learning and
solar field cost reductions.

Additional cost reductions are foreseen, driven by additional
learning and integration with advanced thermodynamic cycles.

LCOE Is an incomplete metric when considering the value of
dispatchable CSP

Operational flexibility and dispatchability add considerable value to
CSP generation.

Under conditions of high-penetrations of variable generation
technologies, the value of CSP can be 5-6 cents/kwh higher than
PV.

Net system benefit, not discussed today, is recommended for side-
by-side comparisons of CSP with other generation technologies. .



Thank you!

Questions?



Synergistic Benefits of PV and CSP with Thermal
Energy Storage

Investigated the impact of CSP w/ —
thermal energy storage as an E.-ini

enabling technology for high Solar Power via the Use of CSP

. with Thermal Energy Storage
penetrations of solar (PV and P Dl s stk ot
CSP).
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Average and marginal curtailment rates of PV in base
scenario

50%

40% - = 23% marginal
curtailment at
30% - 20% penetration

20% A

PV Curatilment Rate

= 50 average
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20% penetration

10% A
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Solar Curatilment Rate
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Common FE, NE, EERE Application Space

Application Size [MWe] Temperature [°C] Pressure
[MPa]

Nuclear (NE) 10 -300 350 -700

Fossil Fuel (FE) 300 - 600 550 - 900
(Indirect heating)
Fossil Fuel (FE) 300 - 600 1100 - 1500
(Direct heating)

Concentrating 10-100 500 - 1000
Solar Power (EERE)
Shipboard Propulsion <10-10 200 - 300

Waste Heat Recovery <230-650
(FE)
Geothermal (EERE) 100 - 300




DOE sCO2 Crosscut Initiative: R&D

Objective Participant

R&D » Accelerate technology « Universities

development National Labs
* Improve performance e Industry

and cost :
* International
collaboration
STEP e Test system  STEP facility
(Super- performance under team
critical CO, steady and transient « Component
Technology  conditions OEM
Electric 2
Powen) « Validate component « Other
10 MWe performance collaboration
demo » Reconfigure for
. . applications, test next-
Supercritical Carbon Dioxide generation components,
optimize performance
Crosscut Tech Team PHmIZE P
Demo e Demonstrate e Industry

commercial viability
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